Optimization of multivariable function
1 回表示 (過去 30 日間)
古いコメントを表示
Hi everybody!
I'm having some trouble trying to optimize a function. I want to minimize the function F defined as:
where Aexp is a vector containing experimental data and Asim is a vector of simulated data. The true problem comes when defining the simulation function:
So the optimization needs to be carried out changing a1, sigma and a2 values in order to make F minimum.
However I'm really stuck as I have been using symbolic functions but turns out the result is always 1. I don't know any other way to use integral fucntions, even if this one does not look like working.
Any ideas? Thanks!
5 件のコメント
Walter Roberson
2020 年 4 月 20 日
With that sigma, a1, a2, then the results of Asim are not exactly 0, but they are smaller than 10^(-7000) so double() converts them to 0.
You can, by the way, rewrite:
sigma=5;
a1=1000000;
a2=126;
iarray=linspace(150,400,30);
i1=iarray(1);
syms x y I2
fun1(x,y)=exp(-x/y);
Int1 = int(fun1, y, [i1, I2]);
fun2 = exp((-a1/5)*Int1-(((x-a2)^2)/(2*sigma^2)));
Int2 = int(fun2, x, [0 inf]);
coef=1/(sigma*(2*pi())^0.5);
AAsim = coef*Int2;
aasim = subs(AAsim, I2, iarray);
asim = double(aasim); %fails, values too small for MuPAD to work with
回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!