fitcnb, Naive Bayes classifier predictor distributions

4 ビュー (過去 30 日間)
Octavian
Octavian 2020 年 4 月 16 日
コメント済み: Purvaja 2025 年 8 月 26 日
Dear All,
I plan training a naive Bayes classifier on using two features predictors (assumed independent, and both derived from voxel intensities in an image) for a binary (0,1) voxel/pixcel classification task (within-label, outside-label). The two predictors have a generalized extreme value distribution (GEVD), so they do not fit the predictor distributions includied with fitcnb. What distribution should I adopt, from those included?
Thank you.
OL
  1 件のコメント
Purvaja
Purvaja 2025 年 8 月 26 日
You can use kernel density estimation in fitcnb for automatic non-parametric modeling of GEVD features, or implement manual Naive Bayes using gevpdf to compute class-conditional likelihoods.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeNaive Bayes についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by