Symbolically Solving a multi-variable system of three equations for three variables
17 ビュー (過去 30 日間)
古いコメントを表示
How can I find symbolic solutions for a,b, and c expressing them with respect to the other variables using the system of equations
(-2Nsinθ)/3=mL(b)
c=-(5bLcosθ)/6+(5(a^2)Lsinθ)/6
N=m( (5bLsinθ)/6+(5(a^2)L)/6cosθ +3g)
0 件のコメント
採用された回答
Ameer Hamza
2020 年 4 月 1 日
Try this
syms a b c N theta m L b g
eq1 = (-2*N*sin(theta))/3==m*L*b;
eq2 = c == -(5*b*L*cos(theta))/6+(5*(a^2)*L*sin(theta))/6;
eq3 = N == m*((5*b*L*sin(theta))/6+(5*(a^2)*L)/6*cos(theta)+3*g);
sol = solve([eq1 eq2 eq3], [a b c]);
Result:
>> sol.a
ans =
-((8*(9*N - 27*g*m + 5*N*sin(theta)^2))/(15*L*m*cos(theta)))^(1/2)/2
((8*(9*N - 27*g*m + 5*N*sin(theta)^2))/(15*L*m*cos(theta)))^(1/2)/2
>> sol.b
ans =
-(2*N*sin(theta))/(3*L*m)
-(2*N*sin(theta))/(3*L*m)
>> sol.c
ans =
(sin(theta)*(9*N - 27*g*m + 5*N*cos(theta)^2 + 5*N*sin(theta)^2))/(9*m*cos(theta))
(sin(theta)*(9*N - 27*g*m + 5*N*cos(theta)^2 + 5*N*sin(theta)^2))/(9*m*cos(theta))
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!