Symbolic Solutions That Populate a Vector

5 ビュー (過去 30 日間)
Justin
Justin 2020 年 3 月 11 日
コメント済み: Walter Roberson 2020 年 3 月 11 日
I am trying to approximate a solution to the Riccati equation. To do this, I have a final value and work backwards to obtain all previous values. The issue is that in this particular case the solution needs to be symbolic bexause it depends on a function of time that will be calculated later. The code I came up with is listed below. This works very well when there is no symbolic variable to deal with.
% P(tf)
P_11(length(t)) = F(1,1);
P_12(length(t)) = F(1,2);
P_22(length(t)) = F(2,2);
% Solve Riccati eqn backwards
syms z;
for n=length(t) : -1 : 2
P_11_dot = P_12(n)^2 + 3*z*P_12(n) + 3*P_12(n)*z - 1;
P_12_dot = 2*P_12(n) - P_11(n) + P_12(n)*P_22(n) + 3*P_22(n)*z;
P_22_dot = 4*P_22(n) - 2*P_12(n) + P_22(n)^2;
P_11(n-1) = P_11(n) - P_11_dot*step;
P_12(n-1) = P_12(n) - P_12_dot*step;
P_22(n-1) = P_22(n) - P_22_dot*step;
end
the error message i get is this;
The following error occurred converting from sym to double:
Unable to convert expression into double array.
Error in LTV_SYS (line 56)
P_11(n-1) = P_11(n) - P_11_dot*step;
The idea is to then calculate z using the code below. Here, I know the initial conditions and since my symbolic variable (z) is a state, I should be able to substitute in for it. The problem is I can't get to this point because of the above error.
% Initialize state vector
x(:,1) = x0;
% Solve for optimal state and control
for n=1 : length(t)-1
z = x(1,n);
A = [0 1; -3*z -2];
P = [P_11(n) P_12(n); P_12(n) P_22(n)];
K(n,:) = inv(R)*B'*P;
U(n+1) = -K(n,:)*x(:,n);
x_dot = A*x(:,n)+B*U(n+1);
x(:,n+1) = x(:,n) + x_dot*step;
end
I appreciate any help that anyone can offer.

回答 (1 件)

Walter Roberson
Walter Roberson 2020 年 3 月 11 日
P_11(length(t)) = sym(F(1,1));
P_12(length(t)) = sym(F(1,2));
P_22(length(t)) = sym(F(2,2));
  7 件のコメント
Justin
Justin 2020 年 3 月 11 日
I tried using vpa in the P loop as shown below. It is now approximating the rational coefficients as decimals. This seems like a good start but I think it is still providing too much precision which is slowing down computation. Is there a way to round the results to, say 5, decimal places?
for n=length(t) : -1 : 2
P_11_dot = vpa(P_12(n)^2 + 3*z*P_12(n) + 3*P_12(n)*z - 1);
P_12_dot = vpa(2*P_12(n) - P_11(n) + P_12(n)*P_22(n) + 3*P_22(n)*z);
P_22_dot = vpa(4*P_22(n) - 2*P_12(n) + P_22(n)^2);
P_11(n-1) = vpa(P_11(n) - P_11_dot*step);
P_12(n-1) = vpa(P_12(n) - P_12_dot*step);
P_22(n-1) = vpa(P_22(n) - P_22_dot*step);
end
Walter Roberson
Walter Roberson 2020 年 3 月 11 日
"You can use digits() to control the precision you want to execute to."

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeNumber Theory についてさらに検索

タグ

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by