arc length parametrization help me

2 ビュー (過去 30 日間)
Hyunji Yu
Hyunji Yu 2020 年 3 月 8 日
回答済み: David Goodmanson 2020 年 3 月 8 日
syms t;
x(t) = sin(3*t^2)*(12*t + (10*13^(1/2))/13);
y(t) = t*(6*13^(1/2)*t + 5);
z(t) = cos(3*t^2)*(12*t + (10*13^(1/2))/13);
%Arc-Length Parametrization
syms tau;
L(t) = int(speed(tau), tau, 0, t);
syms s;
solve(s == L(t), t);
assume(t, 'positive');
g(s) = subs(finverse(L(t)), t, s);
x2(s) = x(g(s))
y2(s) = y(g(s))
z2(s) = z(g(s))
I have no idea how to make code for arc length parametrization. please help me
  2 件のコメント
darova
darova 2020 年 3 月 8 日
What is "arc length parametrization"? Is it length of a curve?
Star Strider
Star Strider 2020 年 3 月 8 日
Some necessary context: nothing appears with this code

サインインしてコメントする。

回答 (1 件)

David Goodmanson
David Goodmanson 2020 年 3 月 8 日
Hello HY,
You just need to go back to the basics. There is a vector x,y,z defined by a parameter (t in this case), so the rate of change of the arc length is
ds/dt = sqrt( (dx/dt)^2 + (dy/dt)^2 (dz/dt)^2 )
You can get that quantity in your code with
dsdt = sqrt(diff(x)^2 + diff(y)^2+diff(z)^2)
but actually being able to integrate the result algebraically to find s(t) is a whole different matter. In this case probably not, but once you have the expression you can integrate it numerically.

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by