Help regarding the transposed convolution layer
1 回表示 (過去 30 日間)
古いコメントを表示
Hi,
Please provide help regarding how the transposedConv2dLayer works.
I am struggling to understand the following helper function
function out = createUpsampleTransponseConvLayer(factor,numFilters)
filterSize = 2*factor - mod(factor,2);
cropping = (factor-mod(factor,2))/2;
numChannels = 1;
out = transposedConv2dLayer(filterSize,numFilters, ...
'NumChannels',numChannels,'Stride',factor,'Cropping',cropping);
end
from the example: https://uk.mathworks.com/help/deeplearning/examples/image-to-image-regression-using-deep-learning.html
How does the filtersize and stride affect the output of this layer?
What's the difference between this layer and a simple upsampling layer?
whether the weights are somehow transposed or learned from scratch?
0 件のコメント
採用された回答
Srivardhan Gadila
2020 年 3 月 17 日
An upsampling layer uses a defined/pre-defined interpolation method to upsample the input but a transposed convolution layer learns weights from the scratch. Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!