Optimization problem using gamultiobj

8 ビュー (過去 30 日間)
user3490
user3490 2020 年 2 月 23 日
コメント済み: Alan Weiss 2020 年 2 月 25 日
The goal is to find the pareto front of a problem using the following equations and constraints:
Equation 1:
Equation 2: (calulates the magnitude of C, D, and E once they are scaled by vector X)
F = sqrt( abs(C(:,1)*X(1) - C(:,2)*X(1)*X(2) + C(:,3)*X(3) + C(:,4)*X(3)*X(4)) ^ 2 +...
abs (D(:,1)*X(1) - D(:,2)*X(1)*X(2) + D(:,3)*X(3) + D(:,4)*X(3)*X(4)) ^ 2 +...
abs (E(:,1)*X(1) - E(:,2)*X(1)*X(2) + E(:,3)*X(3) + E(:,4)*X(3)*X(4)) ^ 2 )
where A3, A13, A23, Q, A34 are constant scalars, j is a complex number, and vectors C, D, and E are complex column vectors (e.g. C(:,1) has the size 100 * 1)
The constraints:
X(1) <= A constant value (JJ)
X(2) <= 1
X(3) <= A constant value (JJ)
X(4) <= 1
S >= some value
max(F) <= another value
Is this possible to be implemented using gamultiobj function?
  1 件のコメント
Alan Weiss
Alan Weiss 2020 年 2 月 25 日
I am not sure what your objectives are. And I am not sure if all of your objectives are real-valued. If you have real-valued objectives, then you can probably use gamultiobj, with a nonlinear constraint representing the lower bound on S and the upper bound on F.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeMultiobjective Optimization についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by