get the x-value of a point on curve

6 ビュー (過去 30 日間)
ahmed salah
ahmed salah 2020 年 2 月 20 日
コメント済み: the cyclist 2020 年 2 月 20 日
I draw a curve between two vector of points, not a function, how can I get the x-value of a certain y-value of the curve?
  2 件のコメント
Jon
Jon 2020 年 2 月 20 日
Please post your code
ahmed salah
ahmed salah 2020 年 2 月 20 日
here is the curve
x=[0,0.250000000000000,0.500000000000000,0.750000000000000,1,1.25000000000000,1.50000000000000,1.75000000000000,2,2.25000000000000,2.50000000000000,2.75000000000000,3,3.25000000000000,3.50000000000000,3.75000000000000,4,4.25000000000000,4.50000000000000,4.75000000000000,5,5.25000000000000,5.50000000000000,5.75000000000000,6,6.25000000000000,6.50000000000000,6.75000000000000,7,7.25000000000000,7.50000000000000,7.75000000000000,8,8.25000000000000,8.50000000000000,8.75000000000000,9,9.25000000000000,9.50000000000000,9.75000000000000,10,10.2500000000000,10.5000000000000,10.7500000000000,11,11.2500000000000,11.5000000000000,11.7500000000000,12,12.2500000000000,12.5000000000000,12.7500000000000,13,13.2500000000000,13.5000000000000,13.7500000000000,14,14.2500000000000,14.5000000000000,14.7500000000000,15,15.2500000000000,15.5000000000000,15.7500000000000,16,16.2500000000000,16.5000000000000,16.7500000000000,17,17.2500000000000,17.5000000000000,17.7500000000000,18,18.2500000000000,18.5000000000000,18.7500000000000,19,19.2500000000000,19.5000000000000,19.7500000000000,20,20.2500000000000,20.5000000000000,20.7500000000000,21,21.2500000000000,21.5000000000000,21.7500000000000,22,22.2500000000000,22.5000000000000,22.7500000000000,23,23.2500000000000,23.5000000000000,23.7500000000000,24,24.2500000000000,24.5000000000000,24.7500000000000,25,25.2500000000000,25.5000000000000,25.7500000000000,26,26.2500000000000,26.5000000000000,26.7500000000000,27,27.2500000000000,27.5000000000000,27.7500000000000,28,28.2500000000000,28.5000000000000,28.7500000000000,29,29.2500000000000,29.5000000000000,29.7500000000000,30,30.2500000000000,30.5000000000000,30.7500000000000,31,31.2500000000000,31.5000000000000,31.7500000000000,32,32.2500000000000,32.5000000000000,32.7500000000000,33,33.2500000000000,33.5000000000000,33.7500000000000,34,34.2500000000000,34.5000000000000,34.7500000000000,35,35.2500000000000,35.5000000000000,35.7500000000000,36,36.2500000000000,36.5000000000000,36.7500000000000,37,37.2500000000000,37.5000000000000,37.7500000000000,38,38.2500000000000,38.5000000000000,38.7500000000000,39,39.2500000000000,39.5000000000000,39.7500000000000,40,40.2500000000000,40.5000000000000,40.7500000000000,41,41.2500000000000,41.5000000000000,41.7500000000000,42,42.2500000000000,42.5000000000000,42.7500000000000,43,43.2500000000000,43.5000000000000,43.7500000000000,44,44.2500000000000,44.5000000000000,44.7500000000000,45,45.2500000000000,45.5000000000000,45.7500000000000,46,46.2500000000000,46.5000000000000,46.7500000000000,47,47.2500000000000,47.5000000000000,47.7500000000000,48,48.2500000000000,48.5000000000000,48.7500000000000,49,49.2500000000000,49.5000000000000,49.7500000000000,50,50.2500000000000,50.5000000000000,50.7500000000000,51,51.2500000000000,51.5000000000000,51.7500000000000,52,52.2500000000000,52.5000000000000,52.7500000000000,53,53.2500000000000,53.5000000000000,53.7500000000000,54,54.2500000000000,54.5000000000000,54.7500000000000,55,55.2500000000000,55.5000000000000,55.7500000000000,56,56.2500000000000,56.5000000000000,56.7500000000000,57,57.2500000000000,57.5000000000000,57.7500000000000,58,58.2500000000000,58.5000000000000,58.7500000000000,59,59.2500000000000,59.5000000000000,59.7500000000000,60,60.2500000000000,60.5000000000000,60.7500000000000,61,61.2500000000000,61.5000000000000,61.7500000000000,62,62.2500000000000,62.5000000000000,62.7500000000000,63,63.2500000000000,63.5000000000000,63.7500000000000,64,64.2500000000000,64.5000000000000,64.7500000000000,65,65.2500000000000,65.5000000000000,65.7500000000000,66,66.2500000000000,66.5000000000000,66.7500000000000,67,67.2500000000000,67.5000000000000,67.7500000000000,68,68.2500000000000,68.5000000000000,68.7500000000000,69,69.2500000000000,69.5000000000000,69.7500000000000,70,70.2500000000000,70.5000000000000,70.7500000000000,71,71.2500000000000,71.5000000000000,71.7500000000000,72,72.2500000000000,72.5000000000000,72.7500000000000,73,73.2500000000000,73.5000000000000,73.7500000000000,74,74.2500000000000,74.5000000000000,74.7500000000000,75,75.2500000000000,75.5000000000000,75.7500000000000,76,76.2500000000000,76.5000000000000,76.7500000000000,77,77.2500000000000,77.5000000000000,77.7500000000000,78,78.2500000000000,78.5000000000000,78.7500000000000,79,79.2500000000000,79.5000000000000,79.7500000000000,80];
y=[-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-999023914.181976;-996101369.470118;-991249448.402318;-984496437.005408;-975881550.135659;-965454552.197838;-953275278.375072;-939413062.813476;-923946081.405808;-906960617.887384;-888550262.878127;-868815056.262843;-847860583.886983;-825797039.950101;-802738266.700420;-778800783.071405;-754102813.758623;-728763329.919491;-702901112.199745;-676633846.161729;-650077259.426284;-623344308.959634;-596544425.958485;-569782824.730923;-543159880.858705;-516770582.779577;-490704059.767441;-465043188.134056;-439864276.347883;-415236828.681841;-391223385.978341;-367879441.171442;-345253426.344544;-323386767.337505;-302314001.257049;-282062951.693815;-262654956.011189;-244105138.745554;-226422724.943098;-209611387.151098;-193669619.776293;-178591134.612436;-164365271.515199;-150977418.455915;-138409435.506143;-126640077.682188;-115645412.001621;-105399224.561864;-95873413.9333128;-87038367.6562235;-78863319.1321027;-71316682.6977580;-64366365.1556118;-57980052.5002544;-52125471.0225585;-46770622.3839590;-41883992.6308008;-37434735.4590011;-33392830.3407140;-29729216.3861588;-26415903.0350821;-23426058.8540209;-20734079.8588388;-18315638.8887342;-16147717.6303287;-14208622.9311963;-12477989.0542226;-10936767.5106050;-9567206.07335306;-8352818.51808101;-7278346.56690364;-6329715.42748575;-5493984.22569959;-4759292.52969696;-4114804.05804821;-3550648.55724255;-3057862.72632757;-2628330.96056771;-2254726.58323161;-1930454.13622771;-1649593.20729371;-1406844.18457416;-1197476.24923513;-1017277.84361470;-862509.786462451;-729861.148096995;-616407.946691314;-519574.682154838;-437098.685902352;-366997.232797294;-307537.335293304;-257208.118800665;-214695.661081271;-178860.166527008;-148715.338006110;-123409.804086680;-102210.457403375;-84487.5602850465;-69701.4761011665;-57390.8887394688;-47162.3778574823;-38681.2237531849;-31663.3226067570;-25868.1002226541;-21092.3200481345;-17164.6889911202;-13941.1722657260;-11300.9360431463;-9142.84398775726;-7382.44074333424;-5949.36205084747;-4785.11739212903;-3841.19684131568;-3077.45915842322;-2460.76307630544;-1963.80822089881;-1564.15617842291;-1243.40590008523;-986.500936172905;-781.148940830449;-617.336511316966;-486.924746716508;-383.312956548538;-301.159744605734;-236.152261880159;-184.815787720481;-144.356982138370;-112.535174719259;-87.5569356105099;-67.9899287062702;-52.6926920127339;-40.7575393356832;-31.4642435108093;-24.2425556547795;-18.6419473328348;-14.3072419185677;-10.9590354849177;-8.37800305312445;-6.39234879527583;-4.86779390210820;-3.69960765354966;-2.80627950629673;-2.12450593559293;-1.60522805518561;-1.21050699313975;-0.911065565816399;-0.684358602861398;-0.513061702609176;-0.383890383971262;-0.286679499687312;-0.213667176299877;-0.158939100945165;-0.117998221631021;-0.0874323075473376;-0.0646576904591947;-0.0477221722017458;-0.0351537765491551;-0.0258449407447336;-0.0189640399835250;-0.0138879438649640;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000];
plot(x,y)

サインインしてコメントする。

採用された回答

the cyclist
the cyclist 2020 年 2 月 20 日
When you say "get", do you mean from the vectors, or only from the curve?
If you mean from the data, you can do, for example
x(y==0.25)
(You might need to be careful if y is not exactly 0.25, due to floating point precision.)
  2 件のコメント
the cyclist
the cyclist 2020 年 2 月 20 日
My solution assumes the y value you are looking for is in the original vector. Sky Sartorius's solution is preferred if the y value is not in the original vector, but you want to interpolate.
ahmed salah
ahmed salah 2020 年 2 月 20 日
Thank you

サインインしてコメントする。

その他の回答 (1 件)

Sky Sartorius
Sky Sartorius 2020 年 2 月 20 日
This is a table lookup / interpolation problem. For your data, you'll first have to make sure there aren't any repeated y values.
yQuery = -2.6e8; % Example query point.
[Y,ind] = unique(y,'stable')
X = x(ind);
x = interp1(Y,X,yQuery)
  2 件のコメント
ahmed salah
ahmed salah 2020 年 2 月 20 日
Thank you this worked for me
the cyclist
the cyclist 2020 年 2 月 20 日
The best way to thank a contributor is to upvote and/or accept their answer. This rewards them with reputation points, and also directs future users to solutions.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by