"symmetrical" rows of matrix
1 回表示 (過去 30 日間)
古いコメントを表示
I have integer matrix A (nA x c) with even number of columns (e.g. mod(c,2) = 0) and unique rows.
How to effectivelly (by speed and memory optimized function "symmetricRows") find the "symmetric" rows of matrix A iA1 and iA2, where "symmetric" rows iA1 and iA2 are defined as:
all(A(iA1,1:end/2) == A(iA2,end/2+1:end) & A(iA1,end/2+1:end) == A(iA2,1:end/2),2) = true
Example:
A = [1 1 1 1;
2 2 2 2;
1 2 3 4;
4 3 2 1;
2 2 3 3;
3 4 1 2;
3 3 2 2]
[iA1, iA2] = symmetricRows(A)
iA1 =
1
2
3
5
iA2 =
1
2
6
7
Typical size of matrices A: nA ~ 1e4-1e6, c ~ 60 - 120
The problem is motivated by pre-processing of large dataset, where "symmetrical" rows are irrelevant from the point of user defined distance metric.
0 件のコメント
採用された回答
Michal
2020 年 2 月 11 日
編集済み: Michal
2020 年 2 月 11 日
4 件のコメント
the cyclist
2020 年 2 月 11 日
Yeah, I should have mentioned that I did my testing on MATLAB Online, so it's probably not the most powerful platform. :-)
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Logical についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!