Robust way to calculate volume of a 3D polygon given a triangulation

8 ビュー (過去 30 日間)
David Winthrop
David Winthrop 2020 年 1 月 31 日
コメント済み: KSSV 2020 年 2 月 1 日
I am looking for a way to calculate the volume of this shape. I export this shape to a professional finite element software which gives the volume as 4.0821e-8 so that is the number I am looking for. I currently use the following:
i1 = tri(:,1);
i2 = tri(:,2);
i3 = tri(:,3);
% vectors of triangle base
v1 = [p2(i1,1)-p2(i2,1) p2(i1,2)-p2(i2,2) p2(i1,3)-p2(i2,3)];
v2 = [p2(i1,1)-p2(i3,1) p2(i1,2)-p2(i3,2) p2(i1,3)-p2(i3,3)];
A = 1/2*cross(v1,v2,2); % surface of a triangle
V = 1/3*dot(A,[x(i1) y(i1) z(i1)],2); % volume of a triangle
V = sum(abs(V))
But it gives a different value. How can I find the volume robustly? I have attached a mat file with the variables tri and p2 such that ths plots the shape:
trisurf(tri,p2(:,1),p2(:,2),p2(:,3),'facecolor','c','edgecolor','b')
  1 件のコメント
KSSV
KSSV 2020 年 2 月 1 日
Try:
dt = delaunayTriangulation(x,y,z) ;
[C,v] = convexHull(dt);
v

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Processing Toolbox についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by