Errors With Training the RCNN dectector trainRCNNobjectDetector
1 回表示 (過去 30 日間)
古いコメントを表示
Hi Professionals,
I need a push here "PLEASE"!!!
I am trying to really understand what these errors mean in my code that leaves me bewildered!!
I am traning a network and the RCNN decoder bit argues about this error that is challenging me!
Can a professional Please Assist me? I really don;t get it!!
MY CODE:
clear
clc
deepNetworkDesigner
gunfolder = '/Users/mmgp/Desktop/gunsGT'
save('gunlables.mat','gunfolder');
gTruth=('gTruth.mat');
%% Specifying Image Amount In Specified Folder
total_images = numel(gunfolder)
%% Accessing Content of Folder TrainingSet Using Datastore
imds = imageDatastore(gunfolder,'IncludeSubFolders',true,'LabelSource','Foldernames');
%% Setting Output Function(images my have size variation resizing for consistency with pretrain net)
imds.ReadFcn=@(loc)imresize(imread(loc),[227,227])
%% Counting Images In Each Category "If not equal this will create issues"
tbl=countEachLabel(imds)
%% Making Category The Same Number Of Images
minSetCount=min(tbl{:,2})
%% Splitting Inputs Into Training and Testing Sets
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized')
%% Loading Pretrained Network
net = alexnet; %Trained on 1million+ images/classify images into 1000 object categories
analyzeNetwork(net) % Display Alexnet architecture & network layer details
%% Alter InputSize Of 1st Layer/ Alexnet Image requirements is 277 width 277 height by 3 colour channels
inputSize = net.Layers(1).InputSize %Displays the input size of Alexnet
%% Counting Total Number Of Images Including Subfolders **IF AVAILABLE**
imgTotal = length(imds.Files)
%% Displaying Multiple Randomized Images Within The Dataset
a = 4;
b = 4;
n = randperm(imgTotal, a*b);
figure(),
Idx = 1;
for j=1:a
for k=1:b
img=readimage(imds,n(Idx));
subplot(a,b,Idx)
imshow(img);
Idx=Idx+1;
end
end
%% Replace Final Layer/Last 3 Configure For 1000 classes
% Finetuning these 3 layers for new classification
% Extracting all Layers except the last 3
layersTransfer = net.Layers(1:end-3);
numClasses = numel(categories(imdsTrain.Labels))
layers = [
layersTransfer
fullyConnectedLayer(numClasses,'WeightLearnRateFactor',25,'BiasLearnRateFactor',25)
softmaxLayer
classificationLayer];
%% Load .MAT file, the ground truths and the Network layers
load('gimlab.mat', 'gTruth', 'net');
%% Training the network
% Resizing images in datastore to meet Alexnet's size requirements
% Utilising Augmented Data Store for automatic resizing of training images
%% Augmented Data Store Prevents Over Fitting By Randomly Flipping Along The Vertical Axis
% Stopping the network from memorizing exact details of the training data
% Also Randomly Translates them up to 30 pixels horizontally & Vertically
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
%% Utilising Data Augmentation For Resizing Validation Data
% implemented without specifying overfit prevention procedures
% By not specifying these procedures the system will be precise via
% predicitons
%% Resizing Images, Assists With Preventing Overfitting
augmentedTrainingSet = augmentedImageDatastore(inputSize ,imdsTrain,'ColorPreprocessing', 'gray2rgb')
augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation,'ColorPreprocessing', 'gray2rgb')
%% Specifying Training Options
% Keep features from earlier layers of pretrained networked for transfer learning
% Specify epoch training cycle, the mini-batch size and validation data
% Validate the network for each iteration during training
% (SGDM)groups the full dataset into disjoint mini-batches This reaches convergence faster
% as it updates the network?s weight value more frequently increase the
% computationl speed
opts = trainingOptions('sgdm', ...
'Momentum', 0.9, ...
'InitialLearnRate', 0.004, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 8, ...
'L2Regularization', 0.004, ...
'MaxEpochs', 10, ...
'MiniBatchSize', 128, ...
'Verbose', true, 'Plots','training-progress');
doTraining = true;
[height,width,numChannels, ~] = size(imdsTrain);
imageSize = [height width numChannels];
inputLayer = imageInputLayer(imageSize);
%% Train the R-CNN detector. Training can take a few minutes to complete.
rcnn = trainRCNNObjectDetector(gTruth, net, opts, 'NegativeOverlapRange', [0 0.3]);
%% Training network Consisting Of Transferred & New Layers.
netTransfer = trainNetwork(augmentedTrainingSet,layers,opts);
%% Classifying Validation Images Utilising Fine-tuned Network
[YPred,scores] = classify(netTransfer,augimdsValidation);
%% Displaying 4 Validation Image Samples With Predicted Labels
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(i));
imshow(I)
label = YPred(idx(i));
title(string(label));
end
%% Calculating Validation Data Classification Accuracy (Accuracy Labels Predicted Accurately By Network)
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)
MY ERRORS
Error using trainRCNNObjectDetector
Expected input number 1, trainingData, to be one of these types:
table
Error in vision.internal.cnn.validation.checkGroundTruth (line 2)
validateattributes(gt, {'table'},{'nonempty'}, name, 'trainingData',1);
Error in trainRCNNObjectDetector>parseInputs (line 311)
vision.internal.cnn.validation.checkGroundTruth(trainingData, fname);
Error in trainRCNNObjectDetector (line 248)
[network, params] = parseInputs(trainingData, network, options, mfilename, varargin{:});
Error in guntest2 (line 117)
rcnn = trainRCNNObjectDetector(gTruth, net, opts, 'NegativeOverlapRange', [0 0.3]);
>>
0 件のコメント
回答 (1 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!