Obtain a transfer function form a 2nd order D.E. using the Lapalce Transforms

1 回表示 (過去 30 日間)
Hello,
(Using MATLAB) Is it possible to obtain a transfer function H(s) from a 2nd order D.E. using the Laplace Transfroms?
The D.E. is; d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
Thanks!

採用された回答

Star Strider
Star Strider 2020 年 1 月 13 日
It is, however it takes some effort and a bit of manual intervention in the end:
% d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
syms s t x(t) y(t) X(s) Y(s)
assume(X(s) ~= 0)
DE = diff(y,2) + 7.6*diff(y,1) + 4.2*y == x;
LDE = laplace(DE,t,s);
LDE = subs(LDE, {laplace(y, t, s), subs(diff(y(t), t), t, 0), laplace(x(t), t, s), y(0)},{Y(s), 0, X(s), 0})
LDETF = simplify( LDE, 'Steps',250)
LDETF = subs(LDETF,{X,Y},{1,1})
LDETF = ((5*s + 3)*(s + 7))/5
s = tf('s');
H = ((5*s + 3)*(s + 7))/5 % Copy ‘LDETF’ Result From Command Window & Paste Here
bode(H)
  4 件のコメント
Joshua Scicluna
Joshua Scicluna 2020 年 1 月 15 日
Thanks!!
Star Strider
Star Strider 2020 年 1 月 15 日
As always, my pleasure!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by