フィルターのクリア

Finding X value for a corresponding Y value from contents of a table

6 ビュー (過去 30 日間)
Deepa Maheshvare
Deepa Maheshvare 2020 年 1 月 13 日
コメント済み: Walter Roberson 2020 年 1 月 14 日
I'd like to find values from the following table.
0 3.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0010 3.0000 1.6532 1.1366 1.0207 1.0025 1.0005
0.0020 3.0000 1.9523 1.3355 1.0915 1.0206 1.0073
0.0030 3.0000 2.1198 1.5034 1.1848 1.0592 1.0289
0.0040 3.0000 2.2283 1.6362 1.2808 1.1137 1.0674
0.0050 3.0000 2.3049 1.7426 1.3723 1.1783 1.1201
0.0060 3.0000 2.3630 1.8301 1.4574 1.2484 1.1825
0.0070 3.0000 2.4097 1.9042 1.5363 1.3208 1.2508
0.0080 3.0000 2.4486 1.9686 1.6099 1.3935 1.3219
0.0090 3.0000 2.4818 2.0259 1.6788 1.4653 1.3937
0.0100 3.0000 2.5109 2.0775 1.7435 1.5355 1.4651
0.0110 3.0000 2.5371 2.1250 1.8047 1.6033 1.5348
0.0120 3.0000 2.5613 2.1691 1.8625 1.6685 1.6023
0.0130 3.0000 2.5835 2.2104 1.9173 1.7312 1.6675
0.0140 3.0000 2.6045 2.2492 1.9694 1.7911 1.7299
0.0150 3.0000 2.6240 2.2859 2.0189 1.8483 1.7898
0.0160 3.0000 2.6424 2.3205 2.0659 1.9030 1.8470
The column on th extreme left is independent quantity(say X) and the other columns contain multiple Y values observed over X. I'd like to find the value of X when Y = 1.5.
For instance, in the third column the value 1.5 doesn't occur. In such a case, I would like to interpolate. Any suggestion on how this can be done?
  3 件のコメント
ananya gupta
ananya gupta 2020 年 1 月 13 日
EXAMPLE 7: EVALUATING FUNCTIONS AT SPECIFIC VALUES
Evaluate \displaystyle f\left(x\right)={x}^{2}+3x - 4f(x)=x2+3x4 at
  1. \displaystyle 22
  2. \displaystyle aa
  3. \displaystyle a+ha+h
  4. \displaystyle \frac{f\left(a+h\right)-f\left(a\right)}{h}hf(a+h)f(a)
SOLUTION
Replace the \displaystyle xx in the function with each specified value.
  1. Because the input value is a number, 2, we can use algebra to simplify.f(2)=22+3(2)4=4+64=6{f(2)=22+3(2)4=4+64=6
  2. In this case, the input value is a letter so we cannot simplify the answer any further.\displaystyle f\left(a\right)={a}^{2}+3a - 4f(a)=a2+3a4
  3. With an input value of \displaystyle a+ha+h, we must use the distributive property.{f(a+h)=(a+h)2+3(a+h)4=a2+2ah+h2+3a+3h4{f(a+h)=(a+h)2+3(a+h)4=a2+2ah+h2+3a+3h4
  4. In this case, we apply the input values to the function more than once, and then perform algebraic operations on the result. We already found that\displaystyle f\left(a+h\right)={a}^{2}+2ah+{h}^{2}+3a+3h - 4f(a+h)=a2+2ah+h2+3a+3h4and we know that\displaystyle f\left(a\right)={a}^{2}+3a - 4f(a)=a2+3a4Now we combine the results and simplify.
f(a+h)f(a)h=(a2+2ah+h2+3a+3h4)(a2+3a4)h
=2ah+h2+3hh =h(2a+h+3)h{cc{ccFactor out h. =2a+h+3{cc{ccSimplify.
If you are intrested to learn matlab from basic to advance then contact to CETPA INFOTECH.
Walter Roberson
Walter Roberson 2020 年 1 月 14 日
Raj comments to ananya,
irrelevant to question
I agree with Raj, this does appear to be talking about something else entirely.

サインインしてコメントする。

採用された回答

Raj
Raj 2020 年 1 月 13 日
You can use 'interp1' command.
For example, in case of third column you can use:
interp1(A(:,4), A(:,1),1.5)
which gives
ans =
0.002979749851102

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeTesting Frameworks についてさらに検索

製品


リリース

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by