My laptop ram is 2.93 GB (showing in the PC) even though it is 8 GB ram and running on 32 bit windows 7 OS.
How to solve out of memory errors in Matlab Neural Networks toolbox for large datasets?
1 回表示 (過去 30 日間)
古いコメントを表示
Hi all,
I have huge input datasets to use in NN Toolbox, but i can't use more than 20 hidden neurons because toolbox shows out of memory errors. It shows like this:
??? Error using ==> horzcat
Out of memory. Type HELP MEMORY for your options.
Error in ==> C:\Program Files\MATLAB\R2010b\toolbox\nnet\nnutils\+nnprop\jac_s.p>jac_s at 285
How to solve this problem, I hope somebody will help me out of this problem.
Thanks.
Here is my code that i used:
-------------------------------------
EX_355 = xlsread('(10nm-50nm).xlsx','A2:A165238');
EX_532 = xlsread('(10nm-50nm).xlsx','B2:B165238');
BA_355 = xlsread('(10nm-50nm).xlsx','C2:C165238');
BA_532 = xlsread('(10nm-50nm).xlsx','D2:D165238');
BA_1064 = xlsread('(10nm-50nm).xlsx','E2:E165238');
Reff = xlsread('(10nm-50nm).xlsx','F2:F165238');
Input(1,:) = EX_355;
Input(2,:) = EX_532;
Input(3,:) = BA_355;
Input(4,:) = BA_532;
Input(5,:) = BA_1064;
Target(1,:) = Reff;
net = feedforwardnet;
net = configure(net,Input,Target);
net = init(net);
inputs = Input;
targets = Target;
hiddenLayerSize = 21;
net = fitnet(hiddenLayerSize);
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
net.divideFcn = 'dividerand';
net.divideMode = 'sample';
net.divideParam.trainRatio = 10/100;
net.divideParam.valRatio = 45/100;
net.divideParam.testRatio = 45/100;
net.trainFcn = 'trainlm';
net.performFcn = 'mse';
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 'plotregression', 'plotfit'};
[net,tr] = train(net,inputs,targets);
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};
net.trainParam.epochs;
net.trainParam.time;
net.trainParam.goal;
net.trainParam.min_grad;
net.trainParam.mu_max;
net.trainParam.max_fail;
net.trainParam.show;
回答 (1 件)
Jason Ross
2012 年 10 月 4 日
編集済み: Jason Ross
2012 年 10 月 4 日
If you are running a 32-bit OS, you won't be able to access more than 4 GB RAM. You will need to install a 64-bit version of Windows (and MATLAB) to access all 8 GB in your machine.
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!