Help with a double series?

12 ビュー (過去 30 日間)
DIANA CARTLON
DIANA CARTLON 2019 年 11 月 28 日
コメント済み: Walter Roberson 2021 年 4 月 18 日
I am trying to write function for the equation, can someone tell me what i am doing wrong
clear,clc
a=input('Please enter the dimension, a\n');
b=input('Please enter the dimension, b\n');
h=input('Please enter the thickness, h\n');
E=input('Please enter the Modulus of Eleasticity, E\n');
v=input('Please enter the Poisson Ratio, v\n');
P=input('Please enter the Load, P\n');
xo=input('Please enter the Position, xo\n');
yo=input('Please enter the Position, yo\n');
rec_plate_pt(a,b,P,xo,yo,x,y);
D=(E*h^3)/(12*(1-v^2))
c=(4*P)/(pi^4*a*b*D)
function w = rec_plate_pt(a,b,P,xo,yo,x,y)
s=0;
for m=1:Inf
for n=1:Inf
s=c*(sin((m*pi*xo)/a)*sin((n*pi*yo)/b)/((m^2/a^2+n^2/b^2).^2)*(sin((m*pi*x)/a))*(sin(n*pi*y)/b))
format long
fprintf('%d',w);
end
end
end
  1 件のコメント
Walter Roberson
Walter Roberson 2019 年 11 月 28 日
Those are infinite series. You should use symsum()

サインインしてコメントする。

回答 (2 件)

Jyothis Gireesh
Jyothis Gireesh 2019 年 12 月 30 日
As Walter mentioned in the previous comment the double summation may be implemented using a combination of symbolic variables and the symsum()” in MATLAB instead of defining a function.
One possible implementation is given below
syms Wc(x,y) m n;
Wc(x,y) = c*symsum(symsum(sin(m*pi*x0/a)*sin(n*pi*y0/b)*sin(m*pi*x/a)*sin(n*pi*y/b)/(m^2/a^2 + n^2/b^2)^2,n,1,Inf),m,1,Inf);

Johannes Ebert
Johannes Ebert 2021 年 4 月 18 日
Hello together,
I have a question: if I apply the code above with my parameter set, the result is the following:
My Input: Wc(120,200)
The result:
(7312256873090709*symsum(symsum(((exp(-(pi*n*10i)/31)*1i)/2 - (exp((pi*n*10i)/31)*1i)/2)^2/(m^2/722500 + n^2/384400)^2, n, 1, Inf)*((exp(-(pi*m*12i)/85)*1i)/2 - (exp((pi*m*12i)/85)*1i)/2)^2, m, 1, Inf))/39614081257132168796771975168
Is there a chance to get the concret value for the used parameter set?
Thanks und kind regards,
Johannes
  3 件のコメント
Walter Roberson
Walter Roberson 2021 年 4 月 18 日
編集済み: Walter Roberson 2021 年 4 月 18 日
Hmmm, this does not seem to help.
syms m n integer
part1 = ((exp(-(pi*m*12i)/85)*1i)/2 - (exp((pi*m*12i)/85)*1i)/2)^2;
part2 = symsum(((exp(-(pi*n*10i)/31)*1i)/2 - (exp((pi*n*10i)/31)*1i)/2)^2/(m^2/722500 + n^2/384400)^2, n, 1, Inf)
part2 = 
part2 = simplify(rewrite(part2, 'sin'), 'steps', 50)
part2 = 
part3 = symsum( part2 .* part1, m, 1, Inf)
part3 = 
part3 = simplify(rewrite(part3, 'sin'), 'steps', 50)
part3 = 
Wc = (sym('7312256873090709') .* part3)/sym('39614081257132168796771975168')
Wc = 
Walter Roberson
Walter Roberson 2021 年 4 月 18 日
Maple is able to find an explicit formula for part2 (that is, the inner symsum() ) in terms of a fair number of psi() calls and some trig terms. But it struggles to find anything definite further than that or to simplify the mess.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by