Euler's method for two first order differential equations?

47 ビュー (過去 30 日間)
Yuhong Jin
Yuhong Jin 2019 年 11 月 27 日
回答済み: Eng 2023 年 4 月 23 日
I was trying to solve two first order differential equations like below using the Euler's method and plot two graphs with x and y as a function of t.
The differential equations are:
dxdt = @(x,t) -1.*y-0.1.*x;
dydt = @(y,t) x-0.5.*y;
I tried this script below:
a=0; %initial time
b=2000; %final time
h = 0.01; % time step
N = (b-a)./h;
t=a:h:b;
t(1)=a;
x(1)=0;
y(1)=0;
dxdt = @(x,t) -1.*y-0.1.*x;
dydt = @(y,t) x-0.5.*y;
for n=1:N
x(n+1)=x(n)+h.*dxdt(x(n),t(n));
y(n+1)=y(n)+h.*dydt(y(n),t(n));
t(n+1)=a+n*h;
end
plot(t,x,'-',t,y,'--')
But there was an error saying
Unable to perform assignment because the left and right sides have a different
number of elements.
Error in Q6 (line 15)
x(n+1)=x(n)+h.*dxdt(x(n),t(n));
I did not quite understand why.
Could anyone help me with this please?
Thanks in advance.
  2 件のコメント
darova
darova 2019 年 11 月 27 日
Where is t?
123Capture.PNG
Yuhong Jin
Yuhong Jin 2019 年 11 月 27 日
t is in the differential equations, dxdt and dydt.
I only have the range of t and relationships between dxdt, dydt and x, y.

サインインしてコメントする。

採用された回答

Jim Riggs
Jim Riggs 2019 年 11 月 27 日
編集済み: Jim Riggs 2019 年 11 月 27 日
Try preallocating x and y
nsteps = (b-a)/h + 1; % this is the number of elements in t(a:h:b) (It is = N+1)
x=zeros(1,nsteps);
y=zeros(1,nsteps);
Also, when you define t as
t=a:h:b;
This creates a vector with T(1)=a and t(end)=b, so the following line
t(1)=a
is not necessary.
Inside your for loop, t has already been defined, above, as t=a:h:b, so you don't need to re-define it.
x and y need to be preallocated to size "nsteps", which is 1 greater than N, in order for your loop to work.
  10 件のコメント
Chris Horne
Chris Horne 2022 年 3 月 29 日
I figured it out. The function definition delimiters typo. The code produces then 2D plot of the approximating functions.
Chris Horne
Chris Horne 2022 年 3 月 31 日
Is the term 'forward Euler' the same as 'Euler' in terms of the algorithm? Here is my method for solving 3 equaitons as a vector:
% This code solves u'(t) = F(t,u(t)) where u(t)= t, cos(t), sin(t)
% using the FORWARD EULER METHOD
% Initial conditions and setup
neqn = 3; % set a number of equations variable
h=input('Enter the step size: ') % step size will effect solution size
t=(0:h:4).';%(starting time value 0):h step size
nt = size(t,1); % size of time array
%(the ending value of t ); % the range of t
% define the function vector, F
F = @(t,u)[t,cos(t),sin(t)]; % define the function 'handle', F
% with hard coded vector functions of time
u = zeros(nt,neqn); % initialize the u vector with zeros
v=input('Enter the intial vector values of 3 components using brackets [u1(0),u2(0),u3(0)]: ')
u(1,:)= v; % the initial u value and the first column
%n=numel(u); % the number of u values
% The loop to solve the ODE (Forward Euler Algorithm)
for i = 1:nt-1
u(i+1,:) = u(i,:) + h*F(t(i),u(i,:)); % Euler's formula for a vector function F
end

サインインしてコメントする。

その他の回答 (1 件)

Eng
Eng 2023 年 4 月 23 日
% Define the differential equation dydx = @(x,y) x + y;
% Define the initial condition y0 = 1;
% Define the step size and interval h = 0.1; x = 0:h:1;
% Initialize the solution vector y = zeros(size(x)); y(1) = y0;
% Apply the Modified Euler Method for i = 1:length(x)-1 k1 = dydx(x(i), y(i)); k2 = dydx(x(i+1), y(i)+hk1); y(i+1) = y(i) + h/2(k1+k2); end
% Plot the solution plot(x,y) xlabel('x') ylabel('y')

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by