Calculating a surface integral over a regular shape

4 ビュー (過去 30 日間)
Oussama GASSAB
Oussama GASSAB 2019 年 11 月 22 日
編集済み: Oussama GASSAB 2019 年 11 月 24 日
let's suppose a function given in polar coordinate F(r,phi) and our purpose is to calculate the surface integral, say F(r,phi)dA over the region S defined by
S={ |Z|<b , |z-z0|>a } where Z=r*exp(1j*phi). it means the regions between the circles |Z|=b , |z-z0|=a . However, F(r,phi) has singularities inside the circle |z-z0|=a . therefore, we are not able to use integral(over circle |Z|<b )-integral(over circle |z-z0|<a) .
your help and consideration are much appreciated.
  3 件のコメント
David Goodmanson
David Goodmanson 2019 年 11 月 24 日
Hi Oussama,
I am assuming that z and Z are basically the same thing, is that correct? Are z0 and 'a' such that the 'a' circle is totally contained in the b circle? Or the other way round? Is z0 real, or can it be complex?
Oussama GASSAB
Oussama GASSAB 2019 年 11 月 24 日
yes z is the same as Z (typing mistake). yes exactly the z0 and 'a' are chosen such that the circle |Z-z0|=a is totally inside the bigger circle |Z|=b.

サインインしてコメントする。

採用された回答

Oussama GASSAB
Oussama GASSAB 2019 年 11 月 24 日
編集済み: Oussama GASSAB 2019 年 11 月 24 日
i have solved by using the following, where F(x,y)=F(r,phi). i have used x-y coordinate and quad2d.
the result was so accurate.
y1= @(x) -sqrt(b^2-x.^2) ; y2=@(x) sqrt(b^2-x.^2) ;
y3= @(x) -sqrt(a^2-(x-z0).^2) ; y4= @(x) sqrt(a^2-(x-z0).^2) ;
intg1 = quad2d(F,-b,z0-a,y1,y2) ;
intg2 = quad2d(F,z0-a,z0+a,y1,y3) ;
intg3 = quad2d(F,z0-a,z0+a,y4,y2) ;
intg4 = quad2d(F,z0+a,b,y1,y2) ;
integ_total=intg1+intg2+intg3+intg4 ;

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

製品


リリース

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by