現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Spech Recognation using Mfcc for Security
8 ビュー (過去 30 日間)
古いコメントを表示
ANDI RiskiWijaya
2012 年 9 月 27 日
|i have project. to make security sistem for home using mfcc method in MATLAB.. one voice (sample .wav) would become database...
this is my work.. please download and help to find the error.. thanks
7 件のコメント
Daniel Shub
2012 年 9 月 27 日
I am closing this question since it is a clear doit4me homework type problem. Please add what you have tried and where you are stuck.
ANDI RiskiWijaya
2012 年 10 月 4 日
this is my work
clear;clc;close all; pc = 60; p=[0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1];
file1 = uigetfile ('*.wav'); % mengambil file wav [y1,x1] = wavread (file1); %sound(y1); % untuk membaca file wav
%Mengubah sinyal suara dalam sampling ke dalam domain waktu y11 = y1(1:12000,1) t1 = 0:length(y11)/x1:1; t1 = 0:1.5/length(y11)-1:1.5; t1 = 0:1.5/length(y11):1.5; t1 = t1(1,1:end-1);
%Perintah untuk desain filter BPF N=10;fs=24000;fp1=2000;fp2=10000; [b,a] =ellip(N,0.5,2,[fp1 fp2]/(fs/2)); [e,f]=freqz(b,a,1024);
%perintah untuk memfilter sinyal suara z1 = filter(b,a,y11);
% set parameter decimate n = 10; %hanya diambil 1/10 sampel
% Hitung decimate g1 = decimate(z1,n);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Untuk menampilkan magnitude tiap inputan display (y11); % input1 = amplitude %untuk menampilkan gambar sinyal suara figure subplot (2,1,1);plot(t1,y11); title('Bentuk Sinyal suara dengan Fs 9500Hz'); xlabel('Time (sec)'); ylabel('Amplitude');grid on subplot (2,1,2); plot(y11);title('Bentuk Sinyal suara dengan Fs 9500Hz'); xlabel('sample'); ylabel('Amplitude');grid on %perintah untuk menampilkan gambar filter figure plot(f/pi*(fs/2),abs(e)); title ('Band Pass Filter');grid %perintah menampilkan sinyal hsil filter figure plot (z1); title ('Sinyal suara setelah di filter');grid xlabel('sample');ylabel('Amplitude') %Tampilkan sinyal hasil BPF kontinu, diskrit, dan hasil decimate figure subplot (2,1,1); stem(g1); title('Decimated Signal1');grid xlabel('sample');ylabel('Amplitude'); subplot (2,1,2); plot(g1); title('Decimated Signal1');grid xlabel('sample');ylabel('Amplitude'); figure stem(z1);xlabel('sample');ylabel('Amplitude');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ambil input dari hasil desimasi in1=g1; alpha=1/sqrt(2); z=1;i=1;m=1;k=1;l=1;
% Hitung ekstraksi ciri berdasarkan rumus MFCC for ii = 1:size(Letters,2); for jj = 1:size(Users,2); for kk = 1:NoOfSamples file_name = strcat(Users(jj),'_',Letters(ii),int2str(kk)); Samples = eval(char(file_name)); zz = find(Samples) < max(Samples/3);%Threshold speech regions Samples(zz) = 0; zz = find(Samples); Speech_Region = Samples(zz)/norm(Samples(zz)); WindowSize = floor((size(Speech_Region,1))/(NoOfWindows+1)); ww = 0; for ll = 0:OverlapSize:(NoOfWindows-1)/2 bb = Speech_Region(floor(ll*WindowSize)+1:floor(ll*WindowSize)+WindowSize).*hamming(WindowSize); fb = fft(bb); mb = 1000 * log10(1 + fb./8000); mfout = dct(log(abs(mb)),NoOfFilters); MFCC(ii,kk,ww*NoOfFilters+1:ww*NoOfFilters+NoOfFilters) = mfout; ww = ww + 1; end end end end
%% Perform Gaussian Modelling for MFCC Windows = size(mfcc,3); tempStorage = zeros(size(Users,2)*NoOfSamples,Windows); tempStorage(:,:) = mfcc(1,:,:); obj_A = gmdistribution.fit(tempStorage,1,'Regularize',0.01); tempStorage(:,:) = mfcc(2,:,:); obj_B = gmdistribution.fit(tempStorage,1,'Regularize',0.01); tempStorage(:,:) = mfcc(3,:,:); obj_C = gmdistribution.fit(tempStorage,1,'Regularize',0.01); tempStorage(:,:) = mfcc(4,:,:); obj_Five = gmdistribution.fit(tempStorage,1,'Regularize',0.01); tempStorage(:,:) = mfcc(5,:,:); obj_Point = gmdistribution.fit(tempStorage,1,'Regularize',0.01); tempStorage(:,:) = mfcc(6,:,:); obj_V = gmdistribution.fit(tempStorage,1,'Regularize',0.01);
for ii = 1:size(Letters,2); for jj = 1:size(Users,2); for kk = 1:NoOfTestSamples %% Extract MFCC for test data InputIn = strcat(Users(jj),'_',Letters(ii),int2str(kk)); Samples = eval(char(InputIn)); zz = find(Samples) < max(Samples/3);%Threshold speech regions Samples(zz) = 0; zz = find(Samples); Speech_Region = Samples(zz); mfcc_test = zeros(1,MFCCNo); WindowSize = floor((size(Speech_Region,1))/(NoOfWindows+1)); ww = 0; for ll = 0:OverlapSize:(NoOfWindows-1)/2 bb = Speech_Region(floor(ll*WindowSize)+1:floor(ll*WindowSize)+WindowSize).*hamming(WindowSize); fb = fft(bb); mb = 2595 * log10(1 + fb./700); mfout = dct(log(abs(mb)),NoOfFilters); mfcc_test(1,ww*NoOfFilters+1:ww*NoOfFilters+NoOfFilters) = mfout; ww = ww + 1; end %% Classify MFCC test data on Mahanalobis distance D1(1) = mahal(obj_A,mfcc_test); D1(2) = mahal(obj_B,mfcc_test); D1(3) = mahal(obj_C,mfcc_test); D1(4) = mahal(obj_Five,mfcc_test); D1(5) = mahal(obj_Point,mfcc_test); D1(6) = mahal(obj_V,mfcc_test); [m Ind] = min(D1); if(Ind == ii) MFCCCorrect_Test(jj,ii) = MFCCCorrect_Test(jj,ii) + 1; end end end end
% inisialisasi output sebagai vector ciri
vektorciri=outfil6;
% plot vector ciri figure plot (vektorciri); title ('Vektor ciri Suara'); hold off xlabel('vektor ciri ke-n');ylabel('ekstraksi ciri')
%program normalisasi dan pengkodean %normalisasi vektorciri v1=max(vektorciri); vektorciri=vektorciri./v1 for i=1:24 if vektorciri(i)>0.49 vektorciri(i)=1 else vektorciri(i)=0 end end disp(vektorciri);
% Nilai fitnes for i=1:25 nilaifitnes1=0; for j=1:24 if vektorciri(j)== p(i,j) nilaifitnes1=nilaifitnes1+1; end end nilaifitnes(i)=nilaifitnes1/24*100; end
bestfitnes=max(nilaifitnes);
generate=0;
%kriteria terministik disp(nilaifitnes); %probabilitas kumuatif totalfitnes=0;
for i=1:25 totalfitnes=nilaifitnes(i)+totalfitnes; end
probabilitaskumulatif(25)=0;
probabilitaskumulatif(1)=(nilaifitnes(1)*100/totalfitnes); for j=2:25 probabilitaskumulatif(j)=(nilaifitnes(j)*100/totalfitnes) + probabilitaskumulatif(j-1); end disp(probabilitaskumulatif);
while ( bestfitnes < 98 )&( generate < 10000 )
%Fungsi seleksi for o=1:30; putar=randperm(100); seleksi=putar(1); seleksi=seleksi+probabilitaskumulatif(1); t=0; for t=1:25; if probabilitaskumulatif(t) <= seleksi for k=1:29; induk(o,k)=p(t,k); end end end end
%susun induk u=0; for i=1:30 if induk(i,25)==1; u=u+1; for l=1:29 induk1(u,l)=induk(i,l); end end end for i=1:30 if induk(i,26)==1; u=u+1; for l=1:29 induk1(u,l)=induk(i,l); end end end
for i=1:30 if induk(i,27)==1; u=u+1; for l=1:29 induk1(u,l)=induk(i,l); end end end
for i=1:30 if induk(i,28)==1; u=u+1; for l=1:29 induk1(u,l)=induk(i,l); end end end
for i=1:30 if induk(i,29)==1; u=u+1; for l=1:29 induk1(u,l)=induk(i,l); end end end
%cross over for i=1:29 a=randperm(100); probabilitascrossover=a(50); if probabilitascrossover < pc b=randperm(29); titik=b(14); for k=1:titik offspring(i,k)=induk1(i+1,k); offspring(i+1,k)=induk1(i,k); end
for k=titik:29
offspring(i+1,k)=induk1(i+1,k);
offspring(i,k)=induk1(i,k);
end
else
for k=1:29
offspring(i,k)=induk1(i,k);
offspring(i+1,k)=induk1(i+1,k);
end
end
i=i+2;
end
for i=1:30 nilaifitnes1=0; for j=1:24 if vektorciri(j)== offspring(i,j) nilaifitnes1=nilaifitnes1+1; end end nilaifitnes(i)=nilaifitnes1/24*100; end bestfitnes=max(nilaifitnes); generate=generate+1; end
Walter Roberson
2012 年 10 月 4 日
Walter Roberson
2012 年 10 月 4 日
A sample input .wav file might turn out to be useful to us, but not until the code is formatted to be readable.
Walter Roberson
2012 年 10 月 4 日
In particular, you need to describe what error message you are encountering and show the traceback.
回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
