Solving ODEs with cubic derivative

10 ビュー (過去 30 日間)
Nora Rafael
Nora Rafael 2019 年 11 月 1 日
I have two differential equations I would like to solve simultaneously using ode45, shown below.
The problem I have is that the second differential equation is actually dy^3/dt, i.e. the derivative of y^3 with respect to t. How do I express this?
function dydt=odefcnNY(t,y,D,Cs,rho,r0,Af,N,V)
dydt=zeros(2,1);
dydt(1)=(3*D*Cs/rho*r0^2)*(y(1)/r0)*(1-y(2)/Cs);
dydt(2)=(D*4*pi*r0*N*(1-y(2)/Cs)*(y(1)/r0)-(Af*y(2)/Cs))/V;
end
D=4e-9;
rho=1300;
r0=10.1e-6;
Cs=0.0016;
V=1.5e-6;
W=4.5e-8;
N=W/(4/3*pi*r0^3*rho);
Af=0.7e-6/60;
tspan=[0 75000];
y0=[r0 Cs];
[t,y]=ode45(@(t,y) odefcnNY(t,y,D,Cs,rho,r0,Af,N,V), tspan, y0);
plot(t,y(:,1),'-o',t,y(:,2),'-.')

回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by