What is the best non-linear least square fitting method that will parameter error in addition to parameters?
7 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I have an array A,
A=[296/296 0.08485182/0.08485182
296/463 0.070180715/0.08485182
296/681 0.055920654/0.08485182
296/894 0.042669196/0.08485182
296/1098 0.03980615/0.08485182
];
now i have fitted array A to an objective function objfcn = @(b,x) b(1).*x.^b(2) + b(3).*x.^b(4); as below:
B0 = ones(4,1);
[B,rsdnrm] = fminsearch(@(b) norm(A(:,2) - objfcn(b,A(:,1))), B0);
fprintf(1, 'c_1 = %12.6f\nc_2 = %12.6f\nn_1 = %12.6f\nn_2 = %12.6f\n', B)
and i am satisfied with the fit. However, fminsearch method does not give errors on parameters (b(1),b(2),b(3),b(4)). I tried other methods such as ''lsqnonlin'' and "lsqcurvefit ", but they do not reproduce the same parameters that i obtain from fminsearch. I was wondering if anyone knows a robust nonlinear least square fit method that is able to estimate parameter error?
Thank you all
0 件のコメント
採用された回答
Star Strider
2019 年 10 月 16 日
2 件のコメント
Star Strider
2019 年 10 月 17 日
My pleasure.
If you prefer the fminsearch parameter estimates, use those as the initial parameter estimates for nlinfit or fitnlm. You can do the same with ga (genetic algorithm) optimisation parameter estimates, that searches the entire parameter space for the best parameter estimates.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Nonlinear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!