Solving a system of equations without "syms"
108 ビュー (過去 30 日間)
古いコメントを表示
Hello!
I have been given the following system of equations that I should solve:
2x1 + 4x2 + 7x3 = 64
3x1 + x2 + 8x3 = 71
-2x = -4
Now, the problem is that I'm on the MatLab Grader platform and it doesn't seem to have this Symbolic Math Tool (i.e. "syms") in it. It only returns the error "Undefined function 'syms' for input arguments of type 'char'."
My code looks like this:
syms x1 x2 x3
equation1 = 2*x1 + 4*x2 + 7*x3 == 64;
equation2 = 2*x1 + 1*x2 + 8*x3 == 71;
equation3 = -2*x1 == -4;
solutionX = solve([equation1, equation2, equation3], [x1, x2, x3]);
SolutionX1 = solution.x1
SolutionX2 = solution.x2
SolutionX3 = solution.x3
Is there any other method I could use instead of using "syms"?
Thank you in advance!
0 件のコメント
採用された回答
jeewan atwal
2019 年 10 月 11 日
A*x = b;
for your case
A = [2 4 7; 2 1 8; -2 0 0];
b = [64;71;-4];
where x = [x1;x2;x3]
solution x can be found using either of two methods as follows:
x = inv(A)*b;
or
x = linsolve(A,b)
4 件のコメント
jeewan atwal
2019 年 10 月 11 日
If you have any doubt, you are free to ask. Happy to help.
Thankyou Steven Lord for the info.
その他の回答 (2 件)
GAGANDEEP KAUR
2020 年 11 月 2 日
I also need to determine some variables using syms with solve command but find some issue with syms itself.
Code is like this:
for i=1:9
syms a b c d e ;
%calculating mole fractions of ionic species
x1=[0.5096 0.5092 0.5087 0.4852 0.4847 0.4834 0.4804 0.4805 0.4803];
x2=[0.0963 0.0964 0.0965 0.1163 0.1161 0.1158 0.1275 0.1266 0.1253];
x3=[0.3941 0.3944 0.3948 0.3985 0.3992 0.4008 0.3921 0.3929 0.3943];
T=[394.15 399.15 404.15 375.15 390.15 405.15 374.15 392.15 406.15];
%Equilibrium constant for reaction 1 (Solvation reaction)
K1=exp((-8.549)+(6692/T(i)));
%Equilibrium constant for reaction 2(Ionization of water)
K2=10^(-14);
%Equilibrium constant for reaction 3(Dissociation of HI)
K3=exp((16.93565)+((1250)/T(i))+(-2.575*log(T(i))));
%Equilibrium constant for reaction 4(Polyiodide formation a)
K4=exp((-936.28)+((40216.27)/T(i))+(151.983*(log(T(i))))+(-0.1675*(T(i))));
%Equilibrium constant for reaction 5(Polyiodide formation b)
K5=exp((1044.78)+(-45171.42/T(i))+(-165.20*log(T(i)))+(0.1511*(T(i))));
eqns=[((d*(c-e))/((x1(i)-a-b-c-d)^5)*(x2(i)-d-b-c))==K1,((a+b+c)*a)/((x1(i)-a-b-c-d)^2)==K2,(((a+b+c)*(d+b))/((x1(i)-a-b-c-d)*(x2(i)-d-b-c-e)))==K3,(((a+b+c)*(c-e))/((x1(i)-a-b-c-d)^4*(x2(i)-d-b-c-e)))==K4,(((e)*(x1(i)-a-b-c-d)^3)/((c-e)*(x3(i)-e)))==K5];
S=solve(eqns,a, b, c, d, e)
S.a(S.a<0)=[];
S.b(S.b<0)=[];
S.c(S.c<0)=[];
S.d(S.d<0)=[];
S.e(S.e<0)=[];
S.a=double(S.a);
S.b=double(S.b);
S.c=double(S.c);
S.d=double(S.d);
S.e=double(S.e);
end
A positive response is awaited
0 件のコメント
コミュニティ
その他の回答 遠隔学習コミュニティ
参考
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!