Modify Loss Function in Predefined Network
4 ビュー (過去 30 日間)
古いコメントを表示
Tony
2019 年 10 月 8 日
回答済み: Harsha Priya Daggubati
2019 年 10 月 11 日
Hi All--I'm relatively new to deep learning and have been trying to use a large data set to predict cardiovascular disease between healthy/sick subjects. I have been trying to train existing networks (AlexNet, etc.). The issue is that my control data vs sick data is about 80%/20% split, so I would like to penalize the loss function for calling a sick patient not sick. This is where I am stuck. Here is my last layer:
lgraph.Layers(25)
ans =
ClassificationOutputLayer with properties:
Name: 'new_classoutput'
Classes: 'auto'
OutputSize: 'auto'
Hyperparameters
LossFunction: 'crossentropyex'
How do I modify the loss function within this layer? Thanks a bunch!
0 件のコメント
採用された回答
Harsha Priya Daggubati
2019 年 10 月 11 日
Hi,
You can try creating your custom loss function. Refer to the following link:
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!