# Writing a funciton for e^x values?

4 ビュー (過去 30 日間)
Brian Bowne 2019 年 9 月 25 日
Answered: David Hill 2019 年 9 月 25 日
I am not sure what is wrong with my code, here is the prompt:
Write a function called e_to_the_x to estimate using its Taylor series:
starting with n =0, add terms until 2 subsequent approximations differ by less than using a while loop. (HINT: use the built-in function factorial()).
I am getting values but when I call e_to_the_x(-1) and e_to_the_x(1) it says I have incorrect values. Here is my code:
function [y1,y2] = e_to_the_x(x)
n=0
y1=(x^n)/factorial(n)
y2=y1+(x^n)/factorial(n)
while abs(y2-y1)>1e-6
y1=y2
y2=y1+(x^n)/factorial(n)
n=n+1
end
end

#### 0 件のコメント

サインイン to comment.

### 採用された回答

David Hill 2019 年 9 月 25 日
function [y1,y2] = e_to_the_x(x)
n=0;
y1=(x^n)/factorial(n);
n=n+1;
y2=y1+(x^n)/factorial(n);
n=n+1;
while abs(y2-y1)>1e-6
y1=y2;
y2=y1+(x^n)/factorial(n);
n=n+1;
end
end

#### 0 件のコメント

サインイン to comment.

James Tursa 2019 年 9 月 25 日
You use the same n value for the first three terms. You need to increment n each time you add a term, including the first two terms that are outside of the while loop.

#### 0 件のコメント

サインイン to comment.

サインイン してこの質問に回答します。

Translated by