# Why do my coeffvalues not produce a sensible result?

1 ビュー (過去 30 日間)
Nicholas Turton 2019 年 8 月 28 日
コメント済み: Torsten 2019 年 8 月 28 日
I have a script that uses the fit fuction on some data using a poly55 fit type. I then use this to get the coeffvalues for the fittted curve and try to replot the surface using the coeffvalues but the result produced is orders of magnitude different from the original data.
Script attached as well as some example data.
Can anyone explain what is happening or recommend a way forward?

#### 0 件のコメント

サインイン to comment.

### 採用された回答

Torsten 2019 年 8 月 28 日
If you use the 'Normalize','on' fitting option, your polynomial has powers of (x-meanx)/stdx and (y-meany)/stdy instead of x and y.

#### 2 件のコメント

Nicholas Turton 2019 年 8 月 28 日
Hi Torsten,
Can you elaborate. I am new to matlab and not following fully what you mean
I have used
[Psi_d_xData, Psi_d_yData, Psi_d_zData] = prepareSurfaceData( id_ind, iq_ind, Psi_d);
[Psi_d_fitresult, Psi_d_gof] = fit( [Psi_d_xData, Psi_d_yData], Psi_d_zData, ft, 'Normalize', 'on' );% Fit model to data.
Psi_d_coeffvals = coeffvalues(Psi_d_fitresult);
which when produced numel(Psi_d_coeffvals) = 21
Using the poly55 eqation
f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y
+ p12*x*y^2 + p03*y^3 + p40*x^4 + p31*x^3*y + p22*x^2*y^2
+ p13*x*y^3 + p04*y^4 + p50*x^5 + p41*x^4*y + p32*x^3*y^2
+ p23*x^2*y^3 + p14*x*y^4 + p05*y^5
...I have then called up each of these coeffvals as well as my desired x and y values to try and reproduce the curve but only could manage the following
Are you saying I need to calculate the mean and std values of x and y and use these in the calculation?
Torsten 2019 年 8 月 28 日
if you switch the mentioned option off, you can use the polynomial you defined in the calculation.
Otherwise you will have to insert (x-meanx)/stdx for x and (y-meany)/stdy for y in the calculation for your polynomial value:
f(x,y) = p00 + p10*(x-meanx)/stdx + p01*(y-meany)/stdy + p20*((x-meanx)/stdx))^2 + ...

サインイン to comment.

### その他の回答 (1 件)

Nicholas Turton 2019 年 8 月 28 日
Thanks Torsten, it worked perfectly
function output_fit = fittingcurve(x_data, y_data, coeffvals)
x_mean = mean(x_data(1,:));
x_std = std(x_data(1,:));
y_mean = mean(y_data(:,1));
y_std = std(y_data(:,1));
output_fit = ...
coeffvals(1) ...
+ coeffvals(2).*((x_data-x_mean)./x_std) ...
+ coeffvals(3).*((y_data-y_mean)./y_std) ...
+ coeffvals(4).*((x_data-x_mean)./x_std).^2 ...
+ coeffvals(5).*((x_data-x_mean)./x_std).*((y_data-y_mean)./y_std) ...
+ coeffvals(6).*((y_data-y_mean)./y_std).^2 ...
+ coeffvals(7).*((x_data-x_mean)./x_std).^3 ...
+ coeffvals(8).*((x_data-x_mean)./x_std).^2.*((y_data-y_mean)./y_std) ...
+ coeffvals(9).*((x_data-x_mean)./x_std).*((y_data-y_mean)./y_std).^2 ...
+ coeffvals(10).*((y_data-y_mean)./y_std).^3 ...
+ coeffvals(11).*((x_data-x_mean)./x_std).^4 ...
+ coeffvals(12).*((x_data-x_mean)./x_std).^3.*((y_data-y_mean)./y_std) ...
+ coeffvals(13).*((x_data-x_mean)./x_std).^2.*((y_data-y_mean)./y_std).^2 ...
+ coeffvals(14).*((x_data-x_mean)./x_std).*((y_data-y_mean)./y_std).^3 ...
+ coeffvals(15).*((y_data-y_mean)./y_std).^4 ...
+ coeffvals(16).*((x_data-x_mean)./x_std).^5 ...
+ coeffvals(17).*((x_data-x_mean)./x_std).^4.*((y_data-y_mean)./y_std) ...
+ coeffvals(18).*((x_data-x_mean)./x_std).^3.*((y_data-y_mean)./y_std).^2 ...
+ coeffvals(19).*((x_data-x_mean)./x_std).^2.*((y_data-y_mean)./y_std).^3 ...
+ coeffvals(20).*((x_data-x_mean)./x_std).*((y_data-y_mean)./y_std).^4 ...
+ coeffvals(21).*((y_data-y_mean)./y_std).^5;

#### 0 件のコメント

サインイン to comment.

サインイン してこの質問に回答します。

Translated by