Related to Matlab Step Comment

2 ビュー (過去 30 日間)
Namjin Park
Namjin Park 2019 年 8 月 27 日
編集済み: Namjin Park 2019 年 8 月 27 日
Hello, I have some question about Step resoponse Comment,
once, I want to plot about open loop system only use Transfer function,
For example for 1/(s+3) sytem, when I plot,
G = tf(1, [1,3])
step(G)
then the Final value of step response is 0.333, So Steady - State error around 0.667
When calculate steadt-state error is fisrt ordher system, We use 1/(1+Kp),
So in this system, Kp = 1/3, So Ess have to be 0.75.
Why is that differenet ??

採用された回答

David Wilson
David Wilson 2019 年 8 月 27 日
You are possibly confusing the closed loop response with the open loop. The closed loop gain is 1/4, so the error is 1-1/4 = 3/4.
>> Gcl = feedback(G,1);
>> step(Gcl)
>> dcgain(Gcl)
ans =
0.2500
  1 件のコメント
Namjin Park
Namjin Park 2019 年 8 月 27 日
編集済み: Namjin Park 2019 年 8 月 27 日
Thanks for reply Wilson !
realy appritiate you,
Actually my transfer model is for MIMO system,
So i curious about steady - state error,
following is my TF models,
L = [-22 9 3 10; 9 -25 9 7; 3 9 -15 3; 10 7 3 -20];
Co = diag(ones(1,N));
Co(N,N) = 99999;
Q_in = ones(1,N)';
[r,c] = size(Q_in);
Q_in(r,c) = 0;
A = Co\L;
B = Co\diag(Q_in);
C = diag(ones(1,N));
D = diag(zeros(1,N));
sys_mimo = ss(A,B,C,D);
TF = tf(sys_mimo);
step(TF)
This is building model for HVAC system,
So last Node is just outside temerature, that's why i subsitute 9999(Inf) in node 4,
by the way,
the important thing is just transfer function, when I plot step response,
I can get 4*4 step response,
see the transfer function,
From input 3 to output...
3 s^2 + 156 s + 0.04542
1: --------------------------------------------
s^4 + 62 s^3 + 1084 s^2 + 4542 s + 1.696e-15
9 s^2 + 225 s + 0.04542
2: --------------------------------------------
s^4 + 62 s^3 + 1084 s^2 + 4542 s + 1.696e-15
s^3 + 47 s^2 + 469 s + 0.04542
3: --------------------------------------------
s^4 + 62 s^3 + 1084 s^2 + 4542 s + 1.696e-15
3e-05 s^2 + 0.00234 s + 0.04542
4: --------------------------------------------
s^4 + 62 s^3 + 1084 s^2 + 4542 s + 1.696e-15
From input 3 to ouput is lke this,
Theoricaly, these steady-state error is around 0,
but in plot, there are big Ess,
i'm just wondering why there is big Ess Differnent with Control Thoery?/..
Thanks for reading Wilson !

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDynamic System Models についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by