Deep learning with vector output
5 ビュー (過去 30 日間)
古いコメントを表示
I need to learn a mapping from 28x28 images into a vector of 45 floating-point numbers. This is not really classification as the numbers range between -1 and 1.
When designing a deep neural network, what output layer could I use?
Best,
Samuli Siltanen
0 件のコメント
回答 (1 件)
Asvin Kumar
2019 年 8 月 29 日
You can use the tanhLayer to obtain output values in the range of –1 to 1.
Here’s the documentation for more information: https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
3 件のコメント
Asvin Kumar
2019 年 8 月 30 日
For the output layer, you can use a regressionLayer after the tanhLayer. This will produce predictions in the required range and compute the half-mean-squared-error loss.
Here's a link to the documentation: https://www.mathworks.com/help/deeplearning/ref/regressionlayer.html
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!