Plotting a graphical converge inside a While - Newton Raphson numerical method
1 回表示 (過去 30 日間)
古いコメントを表示
Hi, I'm trying to get a command inside a while so as the Newton Rapshon code shows a graphical converge. If the values of the aproximations are connected between a line, it shows something like a spider web. Can anyone help me out, please?
Here is my code:
clear
clc
syms x
f = input('Introducir la función: '); %function
p0 = input ('Introducir valor semilla: '); %first aproximation
TOL = input ('Introducir la tolerancia de error: '); %error
fplot (f)
grid on
hold on
derivada = diff(f);
derivada = inline (derivada);
f = inline (f);
eabs = 100;
i =0;
while eabs>TOL
p = p0 - (f(p0))/(derivada(p0));
eabs = abs(((p-p0)/p)*100);
p0 = p;
i = i+1;
end
fprintf('\n Valor= %8.3f ',p0)
plot (p)
fplot (0)
hold off
7 件のコメント
David Wilson
2019 年 8 月 27 日
Another solution assuming you are looking for an iterative numerial stragegy that stays strictly within the given bounds is to use bisection. Sure it is slow, but it will stay within the -pi/2 to +pi/2 bound.
F = @(x) -x +cos(x)+tan(x); % function of interest
eps = 0.0; tol = 1e-6; % assume some stopping tolerance, set eps to 0.1 if nervous
x = [-pi/2+eps, pi/2-eps];
Fx = F(x); % should be vectorised
assert(prod(sign(Fx)) < 0,'x does not bracket root')
while abs(diff(x)) > tol % Now start bisection routine
m = mean(x); % mid point, m = (a + b)/2
fm = F(m); % find f(m)
if Fx(1)*fm > 0
x(1)=m; Fx(1)=fm; % discard left
else
x(2)=m; % discard right
end % if
end % while
Either value of x is a reasonable solution.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!