Can one solve optimization problem(in Matlab) with conditional constraint that depends on the decision variables?

3 ビュー (過去 30 日間)
Hello
My original problem is: Find maximal volume ellipsoid(or ellipse if ), it's size is limited by constraints, n can be higher than 3
min
s.t and for where m is the number of nonlinear inequality constraints
My idea is to create a function that checks if the equation(which is the ellipsoid) has any solution with the inequality system, that is, intersects the subspace described by the inequalities. The function returns 0 if no intersection, and 1 if they intersect each other.
Then my problem would become this:
min
s.t
So the real question is: can you solve a problem like this in Matlab? You would set the intersects variable(with the mentioned function) to 0 or 1 for each the solver tries, and accept it if the variable is 0 for the current .
  16 件のコメント
Bruno Luong
Bruno Luong 2019 年 8 月 9 日
The loop iterates on plane constraints.
Well no that the whole advantage of such technique, I only need to check those which verifie the KT condition and there is only one of them per plane. As I told you the KT condition allows to reduce infinite number of points to finite (here is 1 per plane). No longer need to generate a bunch of points.
If you don't understand you need to read careful about theory of about KT condition.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeGet Started with Optimization Toolbox についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by