Calculate derivatives in a non-uniform grid
49 ビュー (過去 30 日間)
古いコメントを表示
I have a non-uniform grid (non-equal intervals between nodes). [x,y]
I also have the data (U) calculated on this grid.
I want to calculate the derivatives of U.
How can I do this?
0 件のコメント
回答 (3 件)
Star Strider
2019 年 8 月 1 日
dydx = gradient(y) ./ gradient(x);
for vectors, or more generally for matrices:
[dxr,dxc] = gradient(x);
[dyr,dyc] = gradient(y);
dc = dyc./dxc; % Column Derivatives
dr = dyr./dxr; % Row Derivatives
Try that to see if it gives you an acceptable result.
3 件のコメント
Star Strider
2019 年 8 月 1 日
I am guessing that your ‘non-uniform grid’ (that I call ‘G’ here) is a matrix, as is ‘U’.
I would do something like this:
[dxr,dxc] = gradient(G);
[dyr,dyc] = gradient(U);
dc = dyc./dxc; % Column Derivatives
dr = dyr./dxr; % Row Derivatives
So ‘dc’ takes the derivatives along the columns, and ‘dr’ along the rows. See the documentation for the gradient function (that I linked to in my Answer) for details.
Alessandro Mura
2020 年 6 月 22 日
編集済み: Alessandro Mura
2020 年 6 月 22 日
Hi,
the solution is using the Jacobian matrix.
This is used to transform gradients between the coordinate system of (row,column) to (x,y).
First calculate the gradients of U,x and y
[dxi,dxj]=gradient(x);
[dyi,dyj]=gradient(y);
[dui,duj]=gradient(u);
then the Jacobian of the transformation is
[dxi dxj
dyi dyj]
the determinant is
DET=dxi.*dyj- dxj.*dyi;
the inverse of the Jacobian has these 4 coefficients:
JAC11=DET.*dxi;
JAC21=DET.*dyi;
JAC12=DET.*dxj;
JAC22=DET.*dyj;
Then to transform the gradient [dui,duj] into dux, duy you just do:
dux=dui.*JAC11+duj.*JAC12;
duy=dui.*JAC21+duj.*JAC22;
0 件のコメント
Justino Martinez
2024 年 1 月 15 日
I don't know if I have missing something in the notation, but the inverse of the Jacobian for these 4 coefficients shold be
JAC11 = dyj./DET
JAC21 = -dxj./DET
JAC12 = -dyi./DET
JAC22 = dxi./DET
isn't it?
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Polynomials についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!