how to find complex polynomial solution

12 ビュー (過去 30 日間)
halil hasan
halil hasan 2019 年 7 月 30 日
コメント済み: Walter Roberson 2019 年 7 月 30 日
I want to find roots of CDP, T's are constant real values
CDP1 =T_6*(1i*w).^6 +T_5*(1i*w).^5 +T_4*(1i*w).^4 +T_3*(1i*w).^3 +T_2*(1i*w).^2 +T_1*(1i*w) +T_0;
CDP2 =Tp_4*(1i*w)^.4 +Tp_3*(1i*w).^3 +Tp_2*(1i*w).^2 +Tp_1*(1i*w) +Tp_0;
CDP= CDP1*(1i*w).^1.4 +CDP2;
  2 件のコメント
Alex Mcaulley
Alex Mcaulley 2019 年 7 月 30 日
Do you have the symbolic toolbox?
halil hasan
halil hasan 2019 年 7 月 30 日
yes I have

サインインしてコメントする。

回答 (1 件)

Alex Mcaulley
Alex Mcaulley 2019 年 7 月 30 日
Then, after defining all the constant values:
syms w
CDP1 = T_6*(1i*w).^6 + T_5*(1i*w).^5 + T_4*(1i*w).^4 + T_3*(1i*w).^3 + T_2*(1i*w).^2 + T_1*(1i*w) + T_0;
CDP2 = Tp_4*(1i*w)^.4 + Tp_3*(1i*w).^3 + Tp_2*(1i*w).^2 + Tp_1*(1i*w) + Tp_0;
CDP = CDP1*(1i*w).^1.4 + CDP2;
sol = double(solve(CDP))
  8 件のコメント
halil hasan
halil hasan 2019 年 7 月 30 日
I think
if I can replace equvalent of i powers, to a powerless i ; it may solve my problem.
Walter Roberson
Walter Roberson 2019 年 7 月 30 日
w^10 is okay. You then multiply by i and raise the result to 0.9 or 4.9. By the power law, (A*B)^C is A^C*B^C so (i*w^10)^0.9 is i^0.9 * (w^10)^0.9 and that second part is not polynomial
In the case where w is nonnegative real if you are willing to treat 0.9 as 9/10 exactly (which it is not) then you could multiply out to get w^9. But if that is what you want then you need to code it: with the 1i in there, matlab would never compute it that way. You would be getting a different branch of 0.9 power.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangePolynomials についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by