How to improve the result of "Time Series Forecasting Using Deep Learning" ?
2 ビュー (過去 30 日間)
古いコメントを表示
I am working on "Time Series Forecasting Using Deep Learning." (https://www.mathworks.com/help/deeplearning/examples/time-series-forecasting-using-deep-learning.html?searchHighlight=predictAndUpdateState&s_tid=doc_srchtitle)
The result of the prediction is not satisfactory compared to what I expected.
How can I improve the result of prediction?
For instance, what options can I change?
It may improve if I use more data, but it is limited.
I changed epoc number, initial learning step size, training data number, etc; nonetheless, the result is not satisfactory
Please let me know if there are any ways to improve the result for prediction. Thanks
0 件のコメント
回答 (2 件)
Kritika Bansal
2019 年 7 月 31 日
Hi,
You can try tuning the parameters like ‘MiniBatchSize’, ‘MaxEpochs’ and ‘Solver’ to train the network well. Also try to tune the parameters within a particular ‘Solver’ like tuning the value of ‘Momentum’ for ‘sgdm’. Refer to the link below to explore more such options:
0 件のコメント
Jaechan Lim
2019 年 8 月 2 日
I changed solverName from "Adam" to "rmsprop" and somehow it worked better.
I also needed to adjust the values of "InitialLearnRate".
The tuning process is not easy, but thanks, anyway.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!