Solver stopped prematurely. fmincon stopped because it exceeded the function evaluation limit, options.Ma​xFunctionE​valuations = 3.000000e+03. Unable to rectify this error. Please Help

9 ビュー (過去 30 日間)
F_r and T_r are defined.
[m n ]=size(F_r);
[M N]=size(T_r);
My constraints are lengthy but i have checked it is correct.
My code:
aeq=[];
beq=[];
a=[];
b=[];
lb=zeros(1,42);
for j=1:n+N
if(j<=n)
ub(j)=F_r(1);
else
ub(j)=tmax;
end
end
x0=[F_r T_r];
options.Display = 'iter';
[x,fval]=fmincon(@(x)objective2(x,n),x0,a,b,aeq,beq,lb,ub,@(x)constraint2(x,n,UA_r,F_r,T_r),options);
My objective Function:
function f=objective2(x,n)
f=-x(n+10);
end
My contraints:
%% Constraint
function [c,ceq]=constraint2(x,n,UA_r,F_r,T_r)
ceq(1)=x(2)+x(6)-x(1);
ceq(2)=x(3)-x(2);
ceq(3)=x(15)-x(14);
ceq(4)=x(4)-x(3);
ceq(5)=x(12)-x(11);
ceq(6)=x(5)-x(4);
ceq(7)=x(14)-x(13);
ceq(8)=x(10)-x(5)-x(9);
ceq(9)=x(7)-x(6);
ceq(10)=x(17)-x(16);
ceq(11)=x(8)-x(7);
ceq(12)=x(19)-x(18);
ceq(13)=x(9)-x(8);
ceq(14)=x(21)-x(20);
ceq(15)=x(6)*[0.444*(x(n+7)-x(n+6))+(0.00101/2)*(x(n+7)^2-x(n+6)^2)]-[x(16)*[0.409*(x(n+16)-x(n+17))+(0.00096/2)*(x(n+16)^2-x(n+17)^2)]];
ceq(16)=x(6)*[0.444*(x(n+7)-x(n+6))+(0.00101/2)*(x(n+7)^2-x(n+6)^2)]-[UA_r(4)*[(x(n+16)-x(n+7))-(x(n+17)-x(n+6))]/log((x(n+16)-x(n+7))/(x(n+17)-x(n+6)))];
ceq(17)=x(7)*[0.444*(x(n+8)-x(n+7))+(0.00101/2)*(x(n+8)^2-x(n+7)^2)]-[x(18)*[0.429*(x(n+18)-x(n+19))+(0.00099/2)*(x(n+18)^2-x(n+19)^2)]];
ceq(18)=x(7)*[0.444*(x(n+8)-x(n+7))+(0.00101/2)*(x(n+8)^2-x(n+7)^2)]-[UA_r(5)*[(x(n+18)-x(n+8))-(x(n+19)-x(n+7))]/log((x(n+18)-x(n+8))/(x(n+19)-x(n+7)))];
ceq(19)=x(8)*[0.444*(x(n+9)-x(n+8))+(0.00101/2)*(x(n+9)^2-x(n+8)^2)]-[x(20)*[0.414*(x(n+20)-x(n+21))+(0.00096/2)*(x(n+20)^2-x(n+21)^2)]];
ceq(20)=x(8)*[0.444*(x(n+9)-x(n+8))+(0.00101/2)*(x(n+9)^2-x(n+8)^2)]-[UA_r(5)*[(x(n+20)-x(n+9))-(x(n+21)-x(n+8))]/log((x(n+20)-x(n+9))/(x(n+21)-x(n+8)))];
ceq(21)=x(2)*[0.444*(x(n+3)-x(n+2))+(0.000101/2)*(x(n+3)^2-x(n+2)^2)]-x(14)*[0.414*(x(n+14)-x(n+15))+(0.00096/2)*(x(n+14)^2-x(n+15)^2)];
ceq(22)=x(2)*[0.444*(x(n+3)-x(n+2))+(0.000101/2)*(x(n+3)^2-x(n+2)^2)]-UA_r(1)*[((x(n+14)-x(n+3))-(x(n+15)-x(n+2)))/log((x(n+14)-x(n+3))/(x(n+15)-x(n+2)))];
ceq(23)=x(3)*[0.444*(x(n+4)-x(n+3))+(0.00101/2)*(x(n+4)^2-x(n+3)^2)]-UA_r(2)*[((x(n+11)-x(n+4))-(x(n+12)-x(n+3)))/log((x(n+11)-x(n+4))/(x(n+12)-x(n+3)))];
ceq(24)=x(3)*[0.444*(x(n+4)-x(n+3))+(0.00101/2)*(x(n+4)^2-x(n+3)^2)]-x(11)*[0.446*(x(n+11)-x(n+12))+(0.00101/2)*(x(n+11)^2-x(n+12)^2)];
ceq(25)=x(4)*[0.444*(x(n+5)-x(n+4))+(0.00101/2)*(x(n+5)^2-x(n+4)^2)]-x(13)*[0.414*(x(n+13)-x(n+14))+(0.00096/2)*(x(n+13)^2-x(n+14)^2)];
ceq(26)=x(4)*[0.444*(x(n+5)-x(n+4))+(0.00101/2)*(x(n+5)^2-x(n+4)^2)]-UA_r(3)*[((x(n+13)-x(n+5))-(x(n+14)-x(n+4)))/log((x(n+13)-x(n+5))/(x(n+14)-x(n+4)))];
ceq(27)=x(n+2)-x(n+1);
ceq(28)=x(n+6)-x(n+1);
ceq(29)=x(5)*[0.444*x(n+5)+(0.00101/2)*x(n+5)^2]+x(9)*[0.444*x(n+9)+(0.00101/2)*x(n+9)^2]-x(10)*[0.444*x(n+10)+(0.00101/2)*x(n+10)^2];
c(1)=x(n+6)-x(n+7);
c(2)=x(n+17)-x(n+16);
c(3)=10-x(n+16)+x(n+7);
c(4)=10-x(n+17)+x(n+6);
c(5)=x(n+7)-x(n+8);
c(6)=x(n+19)-x(n+18);
c(7)=10-x(n+18)+x(n+8);
c(8)=10-x(n+19)+x(n+7);
c(9)=x(n+8)-x(n+9);
c(10)=x(n+21)-x(n+20);
c(11)=10-x(n+20)+x(n+9);
c(12)=10-x(n+21)+x(n+8);
c(13)=x(n+2)-x(n+3);
c(14)=x(n+15)-x(n+14);
c(15)=10-x(n+14)+x(n+3);
c(16)=10-x(n+15)+x(n+2);
c(17)=x(n+3)-x(n+4);
c(18)=x(n+12)-x(n+11);
c(19)=10-x(n+11)+x(n+4);
c(20)=10-x(n+12)+x(n+3);
c(21)=x(n+4)-x(n+5);
c(22)=x(n+14)-x(n+13);
c(23)=10-x(n+13)+x(n+5);
c(24)=10-x(n+14)+x(n+4);
if(x(n+10)>x(n+5))
c(25)=x(n+10)-x(n+9);
else
c(26)=x(n+10)-x(n+5);
end
ceq(27)=x(13)-F_r(13);
ceq(28)=x(11)-F_r(11);
ceq(28)=x(16)-F_r(16);
ceq(30)=x(18)-F_r(18);
ceq(31)=x(1)-F_r(1);
ceq(32)=x(20)-F_r(20);
ceq(33)=x(n+1)-T_r(1);
ceq(34)=x(n+2)-T_r(2);
ceq(35)=x(n+6)-T_r(6);
ceq(36)=x(n+11)-T_r(11);
ceq(37)=x(n+13)-T_r(13);
ceq(38)=x(n+16)-T_r(16);
ceq(39)=x(n+18)-T_r(18);
ceq(40)=x(n+20)-T_r(20);
  3 件のコメント
Bjorn Gustavsson
Bjorn Gustavsson 2019 年 7 月 12 日
Couldn't you reduce the number or components in x - at least the first 14 ceq seems to be simple linear equalities. That might help a bit.
...and for any given value of n you only look for the smallest value of component x(n+10), so this might be a problem of only looking at the subspace where your constraints are satisfied, maybe linprog has a better algorithm for this problem.
HTH

サインインしてコメントする。

回答 (1 件)

Amna Mazen
Amna Mazen 2021 年 9 月 22 日
If you changed the Step tolerance to a smaller number. Return it back to its default number. I think that was "1e-10" and your problem may be solved.
  1 件のコメント
Walter Roberson
Walter Roberson 2021 年 9 月 23 日
The only option the user passed in was 'Display', 'iter', so the step tolerance was at the default value already. The user needed to increase Ma​xFunctionEvaluations

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSolver Outputs and Iterative Display についてさらに検索

タグ

製品


リリース

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by