- Define the number of hidden states, the order of the AR process, and initialize the transition matrix, emission parameters (AR coefficients), and state probabilities.
- Use the Expectation-Maximization algorithm to iteratively estimate the parameters of the ARHMM.
- Use the Forward-Backward algorithm to compute the probabilities of the hidden states given the observed data.
- Update the AR coefficients and transition probabilities based on the results of the EM algorithm.
Autoregressive HMM implementation?
2 ビュー (過去 30 日間)
古いコメントを表示
Hello MATLAB community,
Is there any Autoregressive hidden Markov model (ARHMM) implementations available in MATLAB? I know that there are AR model functions but I cannot find any for the HMM.
Ashley
0 件のコメント
回答 (1 件)
Aman
2024 年 10 月 9 日
I didn't find any out-of-box implementation available for ARHMM in MATLAB, but in order to implement it in MATLAB, you can follow the below steps:
I hope this will help you to proceed ahead with your workflow :)
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Conditional Mean Models についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!