How to find eigenvalue of a matrix (attached) having three variables?

3 ビュー (過去 30 日間)
Ismaeel
Ismaeel 2019 年 6 月 18 日
コメント済み: Ismaeel 2019 年 7 月 26 日
I have a 33X33 matrix with three variables (KA1, KA2, KA3). I want to take its eigenvalues. The eigenvalue should be a function of these three variables. Any idea? Thanks.
A =
[ -0.1754, -0.01261, 0.005666, 0.03756, 0.02875, 0.01006, -0.04169, -0.002683, 0.000833, -0.02971, -0.02183, -0.01673, 0.004094, -0.002681, -0.001413, 0, 0, 0, 0.1116, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.2057, -13.31, -0.0657, 0.03443, 13.41, -0.1167, 0.5673, 0.00206, -0.000514, 0.4043, 0.01676, 0.01032, -0.1771, 0.2988, -0.1217, 0, 0, 0, 0, 0.1667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0.1378, -0.09722, -1.388, -0.02306, 0.2217, 1.044, -0.3221, -0.004694, -1.429e-5, -0.2296, -0.03819, 0.0002871, 0.1011, 0.06514, -0.1663, 0, 0, 0, 0, 0, 0.1698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 10.12, 0.5683, -0.2554, -8.933, -1.296, -0.4534, 1.879, 0.121, -0.03755, 1.339, 0.984, 0.7541, -0.1846, 0.1209, 0.06369, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 1.076, 30.76, 0.3436, -0.1801, -32.16, 0.6101, -2.967, -0.01077, 0.002688, -2.114, -0.08764, -0.05399, 0.9263, -1.563, 0.6364, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 5.039, -3.556, 21.52, -0.8434, 8.11, -27.88, -11.78, -0.1717, -0.0005228, -8.397, -1.397, 0.0105, 3.699, 2.383, -6.082, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, -3.226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.3163, 0.07269, -0.02432, 0.05294, -0.1658, -0.04318, -0.3983, -16.94, -0.01262, -0.2839, -15.62, 0.2534, 0.112, -0.2546, 0.1426, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0.1245, -0.001107, 0.01228, -0.02083, 0.002524, 0.0218, 0.2527, -0.01684, -10.82, 0.1801, -0.137, -8.9, -0.0731, -0.08933, 0.1624, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.3569, 0.9731, -0.3902, 0.05974, -2.219, -0.6928, -38.3, -0.03862, 0.02101, -36.0, -0.3142, -0.4219, 2.197, -1.111, -1.086, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -2.2, 0.5057, -0.1692, 0.3683, -1.153, -0.3004, -2.771, -13.36, -0.08779, -1.975, -17.17, 1.763, 0.7792, -1.771, 0.992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -1.458, 0.01296, -0.1438, 0.244, -0.02957, -0.2554, -2.961, 0.1973, -5.191, -2.11, 1.605, -8.184, 0.8565, 1.047, -1.903, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -2.86, -11.95, 4.807, 0.4787, 27.26, 8.535, 86.55, 0.4028, -0.2332, 61.68, 3.277, 4.683, -26.26, 13.27, 12.99, -0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.974, 0, 0, 0, 0, 0]
[ 3.478, 74.73, 10.82, -0.5822, -170.4, 19.21, -170.5, -4.851, -1.489, -121.5, -39.46, 29.91, 51.65, -95.45, 43.8, 0, -0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29.45, 0, 0, 0, 0]
[ 18.45, -61.83, -61.2, -3.087, 141.0, -108.7, -349.2, 6.465, 5.145, -248.9, 52.59, -103.3, 106.1, 92.13, -198.2, 0, 0, -0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62.62, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.365, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.947, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.536, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -5.322*KA1, 0.2824*KA1, -0.1263*KA1, 0.8907*KA1, -0.6439*KA1, -0.2243*KA1, -0.2677*KA1, 0.05718*KA1, -0.01764*KA1, -0.1908*KA1, 0.4652*KA1, 0.3543*KA1, -0.06187*KA1, 0.04441*KA1, 0.01746*KA1, 0, 0, 0, -0.9*KA1, 0, 0, 5.0*KA1, 0, 0, -5.0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -1.192*KA2, 1.977*KA2, -0.2315*KA2, 0.1995*KA2, -4.509*KA2, -0.411*KA2, 0.816*KA2, 0.4063*KA2, -0.02598*KA2, 0.5816*KA2, 3.305*KA2, 0.5217*KA2, -0.2788*KA2, 0.3427*KA2, -0.06391*KA2, 0, 0, 0, 0, -0.9*KA2, 0, 0, 5.0*KA2, 0, 0, -5.0, 0, 0, 0, 0, 0, 0, 0]
[ -1.237*KA3, 0.541*KA3, -0.8733*KA3, 0.207*KA3, -1.234*KA3, -1.55*KA3, 0.8115*KA3, 0.09036*KA3, -0.1336*KA3, 0.5783*KA3, 0.7351*KA3, 2.683*KA3, -0.2786*KA3, -0.01786*KA3, 0.2965*KA3, 0, 0, 0, 0, 0, -0.9*KA3, 0, 0, 5.0*KA3, 0, 0, -5.0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0]

回答 (1 件)

johnson wul
johnson wul 2019 年 7 月 26 日
If your matrix is not symmetric, you should change it into a symmetric one by using the formular:
symmetric_Matrix(i,j) = ur_(matrix(i,j)+ur_matrix(i,j)')/2
After doing this just use eig() function to obtain eigenvalues
  1 件のコメント
Ismaeel
Ismaeel 2019 年 7 月 26 日
This is not relevant to the question. Please remove your comment.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by