Please help. Error of index out of bounds
5 ビュー (過去 30 日間)
古いコメントを表示
oluwatayo ogunmiloro
2019 年 6 月 16 日
編集済み: oluwatayo ogunmiloro
2019 年 6 月 17 日
function Y = Linda
N=100; % Total size
en=50; % plot every nth time interval
T=zeros(N+1,N+1); % T is the transition matrix, defined below
v=linspace(0,N,N+1);
t(1)=1;
t=1;
beta=0.23;
v=20;
gamma=1;
b=11;
p=zeros(t(1)+1,N+1);
%p(1,3)=1; % Two individuals initially infected.
bt=beta*v.*(N-v)/N; dbstop if error
dt=(b+gamma)*v;
for i=1:N % Define the transition matrix
T(i,i)=1-bt(i)-dt(i); % diagonal entries
T(i,i+1)=dt(i+1); % superdiagonal entries
T(i+1,i)=bt(i); % subdiagonal entries
end
T(1,1)=1;
T(1,2)=dt(2);
T(N+1,N+1)=1-dt(N+1);
for t=1:t(1)
y=T*p(t,:);
p(t+1,:)=y;
end
pm(1,:)=p(1,:);
for t=1:t(1)/en;
pm(t+1,:)=p(en*t,:);
end
ti=linspace(0,t(1),t(1)/en+1);
st=linspace(0,N,N+1);
mesh(st,ti,pm);
xlabel('Number of Infectives');
ylabel('Time Steps');
zlabel('Probability');
view(140,30);
axis([0,N,0,time,0,1]);
%%%%%%%%%%%%%%%%%%%%%
%This is the error i'm having--
%Attempted to access dt(2); index out of bounds because numel(dt)=1.
Error in Linda (line 18)
T(i,i+1)=dt(i+1); % superdiagonal entries
1 件のコメント
Jan
2019 年 6 月 16 日
Please format your code properly to improve the readability. Then explain, what the problem is. "With some errors" is not clear. It is much easier to fix a problem than to guess, what you consider as a problem.
採用された回答
Manvi Goel
2019 年 6 月 17 日
The following errors were there in your code:
- inappropriate spaces in for loops
- spaces between clear and the variable associated
I have fixed them and the code below now runs fine.
function y = Stoch
% A program for iterations
% y1 y2 y3 y4 and y5 are the different classes
% y10 y20 y30 y40 and y50 are the initial conditions
% Problem-dependent statements are marked with a %***
% icase=1 corresponds to the deterministic problem
% nt is the number of steps
% h is the step size
% Accuracy generally increases as h decreases
clear
for icase = 1:2
clear tt
clear yp1
clear yp2
clear yp3
clear yp4
clear yp5
nsamp=100; %***
tmax=50; %***
nt=500; %***
y10=20; %***
y20=25; %***
y30=15; %***
y40=25; %***
y50=15; %***
if(icase==1)
nsamp=1;
end
h=tmax/nt;
hs=sqrt(h);
randn('state',20); %initiates the random number generator
te1=zeros(nsamp,1);
te2=zeros(nsamp,1);
te3=zeros(nsamp,1);
te4=zeros(nsamp,1);
te5=zeros(nsamp,1);
te6=zeros(nsamp,1);
jj1=0;
jj2=0;
jj3=0;
jj4=0;
jj5=0;
jj6=0;
for jj=1:nsamp
y1=y10;
y2=y20;
y3=y30;
y4=y40;
y5=y50;
yp1(1)=y1;
yp2(1)=y2;
yp3(1)=y3;
yp4(1)=y4;
yp5(1)=y5;
r=randn(nt+1,14);
nchk1=0;
nchk2=0;
nchk3=0;
nchk4=0;
nchk5=0;
n=0;
t=0;
chk=0;
tt(1)=0;
while (chk==0)
n=n+1;
t=t+h;
if(jj==nsamp)
tt(n+1)=t;
end
Lambda=0.070;
mu=0.0048;
alpha=0.03;
beta=0.01;
delta=0.2;
q_1=0.7;
q_2=0.63;
gamma_1=0.17;
gamma_2=0.2;
lambda_1=0.71;
lambda_2=0.82;
k=0.5;
f1=Lambda-beta*y3*y1-mu*y1;
f2=beta*y3*y1-(k+mu)*y2;
f3=(1-delta)*k*y2-(alpha+gamma_1+mu)*y3;
f4=delta*k*y2+alpha*y3-(gamma_2+mu)*y4;
f5=(1-q_1)*gamma_1*y3+(1-q_2)*gamma_2*y4-mu*y5;
g1=sqrt(delta)*r(n,1)-sqrt(mu*y1)*r(n,2)-sqrt(beta*y1*y3)*r(n,1);
g2=sqrt(beta*y1*y3)*r(n,4)-sqrt(mu*y2)*r(n,5)-sqrt((1-delta)*k)*r(n,6)-sqrt(delta*k)*r(n,7); dbstop if error
g3=sqrt((1-delta)*k)*r(n,5)-sqrt(mu*y3)*r(n,7)-sqrt(alpha*y3)*r(n,8)-sqrt((1-q_1)*gamma_1)*r(n,9);
g4=sqrt(delta*k)*r(n,6)+sqrt(alpha*y3)*r(n,8)-sqrt(mu*y4)*r(n,11)-sqrt((1-q_2)*lambda_2)*r(n,12)-sqrt(q_2*gamma_2)*r(n,13);
g5=sqrt((1-q_1)*gamma_1)*r(n,9)+sqrt(2-q_2*gamma_2)*r(n,13)-sqrt(mu*y5)*r(n,14);
if(icase==1)
g1=0;
end
if(icase==1)
g2=0;
end
if(icase==1)
g3=0;
end
if(icase==1)
g4=0;
end
if(icase==1)
g5=0;
end
y1=y1+h*f1+hs*g1;
y2=y2+h*f2+hs*g2;
y3=y3+h*f3+hs*g3;
y4=y4+h*f4+hs*g4;
y5=y5+h*f5+hs*g5;
if(jj==nsamp)
yp1(n+1)=y1;
end
if(jj==nsamp)
yp2(n+1)=y2;
end
if(jj==nsamp)
yp3(n+1)=y3;
end
if(jj==nsamp)
yp4(n+1)=y4;
end
if(jj==nsamp)
yp5(n+1)=y5;
end
% This is Euler's approximation to the SDE
if (y1 < 1)
chk=1;
jj1=jj1+1;
te1(jj1)=t;
end
if (y2 < 1)
chk=1;
jj2=jj2+1;
te2(jj2)=t;
end
if (y3 < 1)
chk=1;
jj3=jj3+1;
te3(jj3)=t;
end
if (y4 < 1)
chk=1;
jj4=jj4+1;
te4(jj4)=t;
end
if (y5 < 1)
chk=1;
jj5=jj5+1;
te5(jj5)=t;
end
if (t >tmax)
chk=1;
jj6=jj6+1;
te6(jj6)=t;
chk=1;
end
end% end of while (chk==0) loop
end% end of for jj=1:nsamp loop
tp=0; tp1=0; tp2=0; tp3=0; tp4=0; tp5=0; tp6=0;
if(jj1 ~= 0)
tp1=sum(te1)/jj1;
end
if(jj2 ~= 0)
tp2=sum(te2)/jj2;
end
if(jj3 ~=0)
tp3=sum(te3)/jj3;
end
if(jj4 ~= 0)
tp4=sum(te4)/jj4;
end
if(jj5 ~= 0)
tp5=sum(te5)/jj5;
end
if(jj6 ~= 0)
tp6=sum(te6)/jj6;
end
if(jj1+jj2+jj3+jj4+jj5~=0)
tp=(sum(te1)+sum(te2)+sum(te3)+sum(te4)+sum(te4))/(jj1+jj2+jj3+jj4+jj5);
end
p1=jj1/nsamp;
p2=jj2/nsamp;
p3=jj3/nsamp;
p4=jj4/nsamp;
p5=jj5/nsamp;
p6=jj6/nsamp;
disp(' ')
if(icase==1)
disp(' Deterministic Calculational Results');
end
if(icase==2)
disp(' Stochastic Calculation Results');
end
disp(' icasensamp h tmax')
disp((sprintf(' %12.0f %12.0f %12.5f %12.2f',icase,nsamp,h,tmax)));
disp(' tp1 p1')
disp((sprintf(' %12.6f %12.6f', tp1, p1)));
disp(' tp2 p2')
disp((sprintf(' %12.6f %12.6f', tp2, p2)));
disp(' tp3 p3')
disp((sprintf(' %12.6f %12.6f', tp3, p3)));
disp(' tp4 p4')
disp((sprintf(' %12.6f %12.6f', tp4, p4)));
disp(' tp5 p5')
disp((sprintf(' %12.6f %12.6f', tp5, p5)));
disp(' tp6 p6')
disp((sprintf(' %12.6f %12.6f', tp6, p6)));
disp(' tp p1+p2+p3+p4+p5')
disp((sprintf(' %12.6f %12.6f', tp, p1+p2+p3+p4+p5)));
if(icase==1)
title('Deterministic');
end
if(icase==2)
title('Stochastic');
end
set(gca,'fontsize',18,'linewidth',1.5);
plot(tt,yp1,'r-')%,tt,yp2,'k-', tt,yp4,'r-',tt,yp3,'y-',tt,yp5,'g-')
xlabel('Time t')
ylabel(' POPULATIONS')
legend('Infected'),% 'Exp','Inf','Qua','Rec')
if(icase==2)
title('Stochastic');
end
hold on
end% end of for icase=1:2 loop
hold off
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Special Functions についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!