All solutions are NaN in my Method of lines code. Please help.
2 ビュー (過去 30 日間)
古いコメントを表示
Dear all,
I am trying to implement Method of lines (MOL) to solve my transient PDE. My solutions are all NaN except for the initial values.
'Index exceeds matrix dimensions.
Error in myFP (line 18)
dPdt(i)=((2*alpha^2.*x(i).*(1+h/2))+(h/2)*(2.*alpha.^2+beta)+(alpha.^2*x(i).^2)).*(y(i+1)/h^2)...
Error in solveFPE>@(t,y)myFP(t,y)
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in solveFPE (line 15)
[t,y]=ode45(@(t,y) myFP(t,y),tspan,y0);'
%% function defining the diff equation
function fval = myFP(~,y,x)
N=10; %number of intervals
P(1)=0;
P(2:N)=y;
P(N+1)=0;
h=0.1;
%paramters
alpha=0.25;
beta=0.75;
x=linspace(0,20,20);
%define dP/dt
dPdt=zeros(N+1,1);
for i=2:N
dPdt(i)=(a^2*x(i).^(2)+2*a^(2)*x(i)+a^(2)*h+a^2*x(i)+b*h/2)*P(i+1)/h^(2)...
-(a^2*x(i).^(2)+2*a^(2)*x(i))*P(i)/h^(2)...
+(a^2*x(i).^(2)+2*a^(2)*x(i)-a^(2)*h-a^2*x(i)-b*h/2)*P(i-1)/h^(2);
end
fval=dPdt(2:N);
%Initial conditions
N=10;
P0(1:N+1,1)=1;
y0=P0(2:N);
tspan=linspace(0,20,20);
%solving the equation
[t,y]=ode45(@(t,y) myFP(t,y),tspan,y0);
plot(t,y)
0 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!