Batch learning for deep learning lstm time series

1 回表示 (過去 30 日間)
Leon
Leon 2019 年 5 月 10 日
コメント済み: Leon 2019 年 7 月 19 日
Is it possible to train a LSTM network by retrain/update the LSTM network by offering different data sets in different batches?
To come one trained LSTM network, trained by using different data sets.
Many thanks for your support

採用された回答

Priyank Sharma
Priyank Sharma 2019 年 5 月 15 日
We train the network using mini-batches of data (if you want to change the size of the mini-batches they can do that in trainingOptions).
If this is what you are following and what you are asking is if you can retrain on multiple datasets, then the answer is yes. You can follow the same workflow for transfer learning that is mentioned in the documentation. Take the trained network, get the layerGraph(net), modify layer graph if needed, and then retrain using trainNetwork and the new dataset.
Please follow the below links for more reference:
Hope this helps!
  1 件のコメント
Leon
Leon 2019 年 7 月 19 日
Thx for your answer Priyank

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSequence and Numeric Feature Data Workflows についてさらに検索

製品


リリース

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by