detection of hottest spot in wire

3 ビュー (過去 30 日間)
monika  SINGH
monika SINGH 2019 年 5 月 7 日
回答済み: Guillaume 2019 年 5 月 7 日
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
%===============================================================================
% Have user browse for a file, from a specified "starting folder."
% For convenience in browsing, set a starting folder from which to browse.
startingFolder = pwd
if ~exist(startingFolder, 'dir')
% If that folder doesn't exist, just start in the current folder.
startingFolder = pwd;
end
% Get the name of the file that the user wants to use.
defaultFileName = fullfile(startingFolder, '*.png');
[baseFileName, folder] = uigetfile(defaultFileName, 'Select a file');
if baseFileName == 0
% User clicked the Cancel button.
return;
end
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% The file doesn't exist -- didn't find it there in that folder.
% Check the entire search path (other folders) for the file by stripping off the folder.
fullFileNameOnSearchPath = baseFileName; % No path this time.
if ~exist(fullFileNameOnSearchPath, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image.
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage);
if numberOfColorChannels > 1
% It's not really gray scale like we expected - it's color.
% Use weighted sum of ALL channels to create a gray scale image.
grayImage = rgb2gray(grayImage);
% ALTERNATE METHOD: Convert it to gray scale by taking only the green channel,
% which in a typical snapshot will be the least noisy channel.
% grayImage = grayImage(:, :, 2); % Take green channel.
end
% Display the image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize, 'Interpreter', 'None');
hp = impixelinfo;
axis on;
%------------------------------------------------------------------------------
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]);
drawnow;
% Crop the image to get rid of feet and legs.
grayImage = grayImage(50, :);
% Filter the image with a top hat filter.
filteredImage = imtophat(grayImage, true(50));
% Display the image.
subplot(2, 2, 2);
imshow(filteredImage, []);
title('Filtered Image', 'FontSize', fontSize, 'Interpreter', 'None');
% Display the image.
subplot(2, 2, 3);
histogram(filteredImage);
title('Histogram of Filtered Image', 'FontSize', fontSize, 'Interpreter', 'None');
grid on;
% Threshold the image.
% threshold(filteredImage)
binaryImage = filteredImage > 15; % Hgh enough to get rid of bad JPEG artifacts. Never use JPEG for image analysis!
% Display the image.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Binary Image', 'FontSize', fontSize, 'Interpreter', 'None');
% Extract largest blob only
binaryImage = bwareafilt(binaryImage, 1);
% Display the image.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Binary Image', 'FontSize', fontSize, 'Interpreter', 'None');
% Find mean intensity
props = regionprops(binaryImage, grayImage, 'MeanIntensity', 'MaxIntensity');
meanIntensity = props.MeanIntensity
MaxIntensity = props.MaxIntensity
% Find hottest spot.
% Get coordinates of pixels in the mask.
[rows, columns] = find(grayImage == MaxIntensity);
% Put a cross at every such intensity on the original image
subplot(2, 2, 1);
hold on;
for k = 1 : length(rows)
xHottestSpot = columns(k);
yHottestSpot = rows(k);
plot(xHottestSpot, yHottestSpot, 'r+', 'MarkerSize', 20, 'LineWidth', 2);
end
message = sprintf('Number of pixels with max intensity of %f = %d.\n',...
MaxIntensity, length(rows))
uiwait(helpdlg(message));
IN THE ABOVE CODE WHAT IS THE MEANING OF LINE filteredImage = imtophat(grayImage, true(50));
  1 件のコメント
dpb
dpb 2019 年 5 月 7 日
One would presume it does what the preceding comment says...
...
grayImage = grayImage(50, :);
% Filter the image with a top hat filter.
filteredImage = imtophat(grayImage, true(50));
...

サインインしてコメントする。

採用された回答

Guillaume
Guillaume 2019 年 5 月 7 日
WHAT IS THE MEANING OF LINE filteredImage = imtophat(grayImage, true(50));
It performs top hat filtering of the image, using a square filtering element of width 50. Using a logical array (true(50)) to construct the filtering element is not the best idea. Matlab will have to convert it to a double array, so it would have been clearer and faster to use ones(50) instead. To be even more explicit, the author could have used strel.
filteredImage = imtophat(grayImage, strel('square', 50));
Now, hopefully you're not asking what is top hat filtering. If you are, read the documentation (link above) and if it's still not enough grab your favorite image processing text book.

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by