How can I have several actions for a DQN in the Reinforcement Learning Toolbox?

3 ビュー (過去 30 日間)
I'm trying to define the output of a DQN agent with a custom environment, and can't use the actionInfo = rlFiniteSetSpec() correctly.
I'm trying to control 3 actuators that will receive commands 0 and 1.
I always get number of actions = 1.
And the documentation is not clear as it's a new toolbox.
Any suggestions?
  3 件のコメント
Rusczak
Rusczak 2020 年 7 月 8 日
Yes,
I followed Emmanouil's suggestion:
actInfo = rlFiniteSetSpec({[0; 0; 0]; [1; 1; 1]; ...
[1; 0; 0]; [0; 1; 0]; [0; 0; 1]; ...
[1; 1; 0]; [0; 1; 1]; [1; 0; 1]})
Huzaifah Shamim
Huzaifah Shamim 2020 年 7 月 9 日
Oh nice okok. What custom environment where you trying to make?
Also how should I approach it if i have 3 agents (like your three actuators) but 12 actions could be applied to them?

サインインしてコメントする。

採用された回答

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis 2019 年 5 月 11 日
If you type
help rlFiniteSetSpec
the second example is
spec = rlFiniteSetSpec({[0,1];[1,1];[1,2];[1,3]})
If you define all possible combinations of the discrete inputs in a cell array as above, that should work (think of a single action as one possible combination of your 3 actuator commands).
I hope this helps.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeReinforcement Learning についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by