USing BVP solver to solve 2-D Laplace’s equation?
9 ビュー (過去 30 日間)
古いコメントを表示
I have confusion about how to use the bvp solver to solve the 2-D Laplace’s equation (∇2u=∂2u∂x2+∂2u∂y2=0) with in a boundary (rectangular). Could anyone help or provide any website that can help to impement it ?
Thank you in advance.
2 件のコメント
回答 (1 件)
David Wilson
2019 年 4 月 10 日
If you mean bvp4c, then no it is not suitable since it solves boundary value ODEs in 1D, not PDEs in 2D. To solve Laplace's eqn in 2D, the easiest way is to use a finite difference grid. See https://au.mathworks.com/help/matlab/math/finite-difference-laplacian.html for more details.
2 件のコメント
Torsten
2019 年 4 月 11 日
Approximate the partial derivatives by difference quotients and solve the resulting system of linear equations in the node values using "backslash" or an iterative method:
https://www.mps.mpg.de/phd/numerical-integration-partial-differential-equations-stationary-problems-elliptic-pde
参考
カテゴリ
Help Center および File Exchange で Boundary Value Problems についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!