Marginal Density from a joint DIstribution

4 ビュー (過去 30 日間)
Mo
Mo 2012 年 8 月 7 日
コメント済み: Antonio Marino 2020 年 11 月 19 日
Hey, I have a really simple question. How can I obtain a marginal density fx(x) from a joint distribution (x,y) ? In my case the joint distribution follows a log-normal distribution. I cannot use Quad since it requires both integrals (x and y). Thanks a lot for your help. Mo

採用された回答

Mike Hosea
Mike Hosea 2012 年 8 月 7 日
You might try to do it symbolically with INT. Numerically, you could do this:
fx = @(t)arrayfun(@(x)integral(@(y)f(x,y),-inf,inf),t)
Naturally you would use whatever the correct range is on y if it's not -inf to inf. I just wrapped it with arrayfun so you could easily integrate it or plot it. I also used arrayfun because you can substitute quadgk for integral if you don't have R2012a. With the new integral function in particular you also have the option of using 'ArrayValued' option. Here's an example
BivariateNormalPDF = @(x,y,mux,sigmax,muy,sigmay,rho) ...
exp(-(((x-mux)/sigmax).^2 ...
+ ((y-muy)/sigmay).^2 ...
- 2*rho*((x-mux).*(y-muy)/(sigmax*sigmay)) ...
)/(2*(1-rho*rho)) ...
)/(2*pi*sigmax*sigmay*sqrt(1-rho*rho));
f = @(x,y)BivariateNormalPDF(x,y,3,1,1,2,0.5);
fx = @(x)integral(@(y)f(x,y),-inf,inf,'ArrayValued',true);
You can now plot or integrate fx.
>> x = -2:0.1:8;
>> plot(x,fx(x));
>> integral(fx,-inf,inf)
ans =
1
-- Mike
  5 件のコメント
Mo
Mo 2012 年 8 月 9 日
Everything works now ! Thanks a lot for your help Mike.
Antonio Marino
Antonio Marino 2020 年 11 月 19 日
Hi Mike, I would like to ask you if the same procedure is suitable to calculate the conditional distribution dividing the joint and marginal.
If it is possible Can you explain how?
Would be very useful to me for my thesis.
thank you in advance.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by