How to save output from loop's eteration into a new matrix.

1 回表示 (過去 30 日間)
Areeb Siraj
Areeb Siraj 2019 年 3 月 30 日
コメント済み: Areeb Siraj 2019 年 3 月 31 日
% for I quad
%%co-ordinadets of n and e
n = [-0.557 0.577 0.577 -0.577]; e = [-0.577 -0.577 0.577 0.577];
%%co-ordinadets of x and y
for j=10:10:100 for i=10:10:100 x = [i-10 i i i-10]; y = [j-10 j-10 j j];
A = -0.25*(1-n); B = -0.25*(1-e); C = 0.25*(1-n); D = -0.25*(1+e); E = 0.25*(1+n); F = 0.25*(1+e); G = -0.25*(1+n); H = 0.25*(1-e);
Ia = (A(1,1)*x(1,1)) + (C(1,1)*x(1,2)) + (E(1,1)*x(1,3)) + (G(1,1)*x(1,4)); Ja = (B(1,1)*x(1,1)) + (D(1,1)*x(1,2)) + (F(1,1)*x(1,3)) + (H(1,1)*x(1,4)); Ka = (A(1,1)*y(1,1)) + (C(1,1)*y(1,2)) + (E(1,1)*y(1,3)) + (G(1,1)*y(1,4)); La = (B(1,1)*y(1,1)) + (D(1,1)*y(1,2)) + (F(1,1)*y(1,3)) + (H(1,1)*y(1,4));
% M is jacobian matrix
Ma = [Ia Ja; Ka La]; Na = inv(Ma'); %Mi' = transpose of Jacobian matrix P1a = Na*[A(1,1); B(1,1)]; P2a = Na*[C(1,1); D(1,1)]; P3a = Na*[E(1,1); F(1,1)]; P4a = Na*[G(1,1); H(1,1)];
Qa = [P1a(1,1) 0 P2a(1,1) 0 P3a(1,1) 0 P4a(1,1) 0; 0 P1a(2,1) 0 P2a(2,1) 0 P3a(2,1) 0 P4a(2,1); P1a(2,1) P1a(1,1) P2a(2,1) P2a(1,1) P3a(2,1) P3a(1,1) P4a(2,1) P4a(1,1)]; S = 180; %% value of E = 180 N/mm2 for steel T = 78; %% value of G = 78 N/mm2 for steel U = 34; %% value of poison's ratio V = [(1/S) (-U/S) 0; (-U/S) (1/S) 0; 0 0 (1/T)]; W = inv(V); X1 = 1; %% weighted fucntion w1 X2 = 1; %% weighted fucntion w2 t = 1; %% thickness X3a = det(Ma); %% determinant of jacobian matrix Ya = X1*X2*Qa'*W*Qa*t*X3a;
% for II quad
Ib = (A(1,2)*x(1,1)) + (C(1,2)*x(1,2)) + (E(1,2)*x(1,3)) + (G(1,2)*x(1,4)); Jb = (B(1,2)*x(1,1)) + (D(1,2)*x(1,2)) + (F(1,2)*x(1,3)) + (H(1,2)*x(1,4)); Kb = (A(1,2)*y(1,1)) + (C(1,2)*y(1,2)) + (E(1,2)*y(1,3)) + (G(1,2)*y(1,4)); Lb = (B(1,2)*y(1,1)) + (D(1,2)*y(1,2)) + (F(1,2)*y(1,3)) + (H(1,2)*y(1,4));
% M is jacobian matrix Mb = [Ib Jb; Kb Lb]; Nb = inv(Mb'); %Mi' = transpose of Jacobian matrix P1b = Nb*[A(1,2); B(1,2)]; P2b = Nb*[C(1,2); D(1,2)]; P3b = Nb*[E(1,2); F(1,2)]; P4b = Nb*[G(1,2); H(1,2)];
Qb = [P1b(1,1) 0 P2b(1,1) 0 P3b(1,1) 0 P4b(1,1) 0; 0 P1b(2,1) 0 P2b(2,1) 0 P3b(2,1) 0 P4b(2,1); P1b(2,1) P1b(1,1) P2b(2,1) P2b(1,1) P3b(2,1) P3b(1,1) P4b(2,1) P4b(1,1)]; X3b = det(Mb); %% determinant of jacobian matrix Yb = X1*X2*Qb'*W*Qb*t*X3b;
% for III quad
Ic = (A(1,3)*x(1,1)) + (C(1,3)*x(1,2)) + (E(1,3)*x(1,3)) + (G(1,3)*x(1,4)); Jc = (B(1,3)*x(1,1)) + (D(1,3)*x(1,2)) + (F(1,3)*x(1,3)) + (H(1,3)*x(1,4)); Kc = (A(1,3)*y(1,1)) + (C(1,3)*y(1,2)) + (E(1,3)*y(1,3)) + (G(1,3)*y(1,4)); Lc = (B(1,3)*y(1,1)) + (D(1,3)*y(1,2)) + (F(1,3)*y(1,3)) + (H(1,3)*y(1,4));
% M is jacobian matrix Mc = [Ic Jc; Kc Lc]; Nc = inv(Mc'); %Mi' = transpose of Jacobian matrix P1c = Nc*[A(1,3); B(1,3)]; P2c = Nc*[C(1,3); D(1,3)]; P3c = Nc*[E(1,3); F(1,3)]; P4c = Nc*[G(1,3); H(1,3)];
Qc = [P1c(1,1) 0 P2c(1,1) 0 P3c(1,1) 0 P4c(1,1) 0; 0 P1c(2,1) 0 P2c(2,1) 0 P3c(2,1) 0 P4c(2,1); P1c(2,1) P1c(1,1) P2c(2,1) P2c(1,1) P3c(2,1) P3c(1,1) P4c(2,1) P4c(1,1)]; X3c = det(Mc); %% determinant of jacobian matrix Yc = X1*X2*Qb'*W*Qb*t*X3c;
% for IV quad
Id = (A(1,4)*x(1,1)) + (C(1,4)*x(1,2)) + (E(1,4)*x(1,3)) + (G(1,4)*x(1,4)); Jd = (B(1,4)*x(1,1)) + (D(1,4)*x(1,2)) + (F(1,4)*x(1,3)) + (H(1,4)*x(1,4)); Kd = (A(1,4)*y(1,1)) + (C(1,4)*y(1,2)) + (E(1,4)*y(1,3)) + (G(1,4)*y(1,4)); Ld = (B(1,4)*y(1,1)) + (D(1,4)*y(1,2)) + (F(1,4)*y(1,3)) + (H(1,4)*y(1,4));
% M is jacobian matrix Md = [Id Jd; Kd Ld]; Nd = inv(Md'); %Mi' = transpose of Jacobian matrix P1d = Nd*[A(1,4); B(1,4)]; P2d = Nd*[C(1,4); D(1,4)]; P3d = Nd*[E(1,4); F(1,4)]; P4d = Nd*[G(1,4); H(1,4)];
Qd = [P1d(1,1) 0 P2d(1,1) 0 P3d(1,1) 0 P4d(1,1) 0; 0 P1d(2,1) 0 P2d(2,1) 0 P3d(2,1) 0 P4d(2,1); P1d(2,1) P1d(1,1) P2d(2,1) P2d(1,1) P3d(2,1) P3d(1,1) P4d(2,1) P4d(1,1)]; X3d = det(Md); %% determinant of jacobian matrix Yd = X1*X2*Qd'*W*Qd*t*X3d;
% equvalent matix Yeq = Ya + Yb + Yc + Yd; end end
This is my code and I want save output from loop's eteration in a matrix of size 80 by 80 for further formulation. Such that the first element of this new matrix is the first eteration of loop and so on.
  3 件のコメント
Areeb Siraj
Areeb Siraj 2019 年 3 月 30 日
<<www-mathworks-com-matlabcentral-answers-uploaded_files-211221-Screenshot_2019-03-30-22-40-28-802_com-mathworks-matlabmobile.png>>
<<www-mathworks-com-matlabcentral-answers-uploaded_files-211222-Screenshot_2019-03-30-22-41-27-055_com-mathworks-matlabmobile.png>>
<<www-mathworks-com-matlabcentral-answers-uploaded_files-211223-Screenshot_2019-03-30-22-41-32-719_com-mathworks-matlabmobile.png>>
<<www-mathworks-com-matlabcentral-answers-uploaded_files-211224-Screenshot_2019-03-30-22-41-37-467_com-mathworks-matlabmobile.png>>
Pls help yourself
Jan
Jan 2019 年 3 月 30 日
編集済み: Jan 2019 年 3 月 30 日
Seriously?
Do not overestimate the willingness of the forum to fix unreadable code, to guess the meaning of vague questions and to follow badly formatted links to not existing web pages. Of course there is no server called "www-mathworks-com-...", but it must be "www.mathworks.com/...".

サインインしてコメントする。

採用された回答

Rebecca Cleveland Stout
Rebecca Cleveland Stout 2019 年 3 月 30 日
Your code is quite hard to read, but generally, to save elements in a loop, you can do:
A = NaN*ones(80); % preallocate matrix where you want to save stuff
for k = 1:numel(A)
% do your operations
A(k) = result; % save your kth result to element k of the matrix
end
  1 件のコメント
Areeb Siraj
Areeb Siraj 2019 年 3 月 31 日
How to save output from loop's iteration in a new 2D matrix (80 by 80) for further formulation.
Pls ignore this line. " YEQ(:,:,j/10) = Yeq(:,:) "
The code in this line is providing a 3D matrix, but I want a 2D matrix.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLoops and Conditional Statements についてさらに検索

タグ

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by