First-Order Plus Dead Time Model
17 ビュー (過去 30 日間)
古いコメントを表示
Following this Mathworks example I'm getting the expected output using the example of
with this code:

num = 5;
den = [1 1];
P = tf(num,den,'InputDelay',3.4)
figure()
step(P)
But how would I plot this by first solving the transfer function analytically, i.e., if I apply a step input to

which gives me 

then perform inverse Lapace transform on

which gives me 

but how do I apply the dead time part of
?

0 件のコメント
回答 (1 件)
Muhammad Aseer Khan
2021 年 2 月 12 日
for exp(-a*s)F(s) the Laplace inverse will be f(t-a)U(t-a). Then find inverse laplace of first 5/(s(s+a)) and then put (t-a) instead of t.
In Programming, Run a loop for no. of times you want to get samples. Say, I want to get 10 samples:
S12=[]; % It is am empty matrix in which I want to store my elements of all step response
for i=1:10
S12=[S12;5-5*exp(-0.2*(i-1.4))];
end
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!