converting state vector to classical orbital elements in orbital mechanics/ evaluating 10x7 matrix and output
3 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I have some errors regarding a piece of code from a larger piece of file. There is a function file that converts a set of 10x6 elements in a state vector M=[x y z ydot ydot zdot] each having 10 values to classical orbital elements that is coe=[a,e,i,raan,w,theta,h] . The problem I am facing right now is overwriting the results and so I end up getting wrong values for the set of classical orbital elements of the corresponding state vector. Here is what I have. Any help is appreciated. Thank you.
function [a,e,inclination,RA,w,trueanomaly,h]=coe_from_cartesianfinal(r,v)
mu_of_moon=4904.8695;
number=length(r);
vradial=zeros(number,3);
h=zeros(number,1);
H=zeros(number,3);
RA=zeros(number,1);
inclination=zeros(number,1);
w=zeros(number,1);
trueanomaly=zeros(number,1);
a=zeros(number,1);
N=zeros(number,3);
n=zeros(number,1);
E=zeros(number,3);
e=zeros(number,1);
rmagnitude=zeros(number,1);
vmagnitude=zeros(number,1);
K=repmat([0 0 1],number,1);
for k=1:number
rmagnitude(k)=norm(r(k)); %in km
vmagnitude(k)=norm(v(k)); % in km/s
vradial(k)=dot(r(k),v(k))/rmagnitude(k);
end
for k=1:number
H=cross(r,v); %%angular momentum vector
h(k)=norm(H);
inclination(k)=acos(H(k,3)/h(k));
N=cross(K,H);
n(k)=norm(N);
cp=cross(N,r);
if n(k)~=0
RA(k)=acos(N(k,1)/n(k));
if N(k,2)<0
RA(k)=2*pi-RA(k);
end
else
RA=0;
end
E=(1/mu_of_moon)*(((vmagnitude(k).^2-mu_of_moon/rmagnitude(k)).*r)-(rmagnitude(k)*vradial(k)*v(k)));
e(k)=sqrt(dot(E(k),E(k)));
eps=1.e-10;
if n(k)~=0
if e(k)>eps
w(k)=acos(dot(N(k),E(k))/(n(k)*e(k)));
if E(k,3)>=0
w(k)=0+w(k);
else
w(k)=2*pi-w(k);
end
else
w(k)=0;
end
else
w(k)=0;
end
if e(k)>eps
trueanomaly(k)=acos(dot(E(k),r(k))/(e(k)*rmagnitude(k)));
if vradial(k)<0
trueanomaly(k)=2*pi - trueanomaly(k);
end
else
if cp(k,3)>=0
trueanomaly(k)=acos(dot(N(k),r(k))/(n(k)*rmagnitude(k)));
else
trueanomaly(k)=2*pi- acos(dot(N(k),r(k))/(n(k)*rmagnitude(k)));
end
end
%%for hyperbola
a(k)=(h(k).^2/mu_of_moon)*(1/(1-e(k).^2));
end
return
%%main script
%%x and y precalculated
R=[x y z];
V=[xdot ydot zdot];
R =
1.0e+03 *
-1.539543931038617 -1.071744082094234 -0.126366771509053
-1.330687701629566 -1.342081271655471 -0.415930037786897
-1.388204041889298 -1.338783059251117 0.064643782753795
-1.746536513511584 -0.696456811628313 -0.345306735225741
-1.035542939142647 -1.546765050831709 -0.137246669037133
-0.876727514529091 -1.717106335359355 -0.181664490600635
-0.786828482429288 -1.696549340718617 -0.322180648909427
-1.353803403176800 -1.358459700082971 0.220334514950041
-0.624050627308063 -1.768814312117858 -0.433907846555942
-1.078978929041128 -1.491445175045869 0.065068333728124
V =
-0.834262318050923 1.264469899064419 -0.560310608663483
-1.155428432334938 1.031548890177763 0.368071417806823
-0.765554902854875 0.847528122161641 1.112402132026975
0.647354488449319 -1.381539397296574 -0.487814775382694
1.289469931929601 -0.814550810565715 -0.549250177549768
0.734875876906693 -0.227824624723748 -1.393155006501252
1.462969211723908 -0.653493221799611 -0.131672557730817
1.134138427903162 -1.085461076386547 0.276149812946353
1.504643018131369 -0.468793144378925 -0.252969373590829
-1.322452638720385 0.955760603071847 -0.022038245050036
[a,e,inclination,RA,w,trueanomaly,h]=coe_from_cartesianfinal(R,V);
0 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Reference Applications についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!