Solving simultaneous time-dependent matrix equations
8 ビュー (過去 30 日間)
古いコメントを表示
I am attempting to solve a set of time-dependent equations which involve matrices. I have tried to use both ode45 and ode15 which both work for equations with one-dimensional variables; as follows:
% Defining constants
A_a = 7.7790;
g1_1 = 0.0019;
g2_1 = 0.0021;
ga_1 = 0.1862;
Hv1 = 2.375;
Hv2 = 2.375;
H1 = 3.9;
CE = 0.82;
Astar1 = 0.9282;
Astar2 = 1.1602;
tspan = [0 9];
Q0 = zeros(3,1);
[t,Q] = ode45(@(t,Q) fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2), tspan, Q0)
plot(t,Q(:,1),'-o',t,Q(:,2), '.-')
function dQdt = fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2)
dQdt = zeros(3,1);
dQdt(1) = (Astar1^2)*((g1_1*Hv1 + ga_1*(H1 + CE))-((Q(3)^2)/A_a^2));
dQdt(2) = (Astar2^2)*((g2_1*Hv2 + ga_1*(CE))-((Q(3)^2)/A_a^2));
dQdt(3) = Q(1) + Q(2);
end
This solves the equation as expected. However when the constants g1_1, g2_1, and ga_1 each become a 1-by-2 matrix, I tried using a similar function (given below), however, it will not solve the code. Is there a way to use matrices in differential equations?
% Defining constants
A_a = 7.7790;
g1_1 = [0.0019 0.0076]
g2_1 = [0.0021 0.0083]
ga_1 = [0.1862 0.3725]
Hv1 = 2.375;
Hv2 = 2.375;
H1 = 3.9;
CE = 0.82;
Astar1 = 0.9282;
Astar2 = 1.1602;
tspan = [0 9];
Q0 = zeros(3,2);
[t,Q] = ode45(@(t,Q) fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2), tspan, Q0)%, options)
plot(t,Q(:,1),'-o',t,Q(:,2), '.-')
function dQdt = fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2)
dQdt = zeros(3,2);
dQdt(1) = (Astar1^2)*((g1_1*Hv1 + ga_1*(H1 + CE))-((Q(3)^2)/A_a^2));
dQdt(2) = (Astar2^2)*((g2_1*Hv2 + ga_1*(CE))-((Q(3)^2)/A_a^2));
dQdt(3) = Q(1) + Q(2);
end
0 件のコメント
採用された回答
Stephan
2019 年 2 月 19 日
編集済み: Stephan
2019 年 2 月 19 日
Hi,
try:
% Defining constants
A_a = 7.7790;
g1_1 = [0.0019 0.0076]
g2_1 = [0.0021 0.0083]
ga_1 = [0.1862 0.3725]
Hv1 = 2.375;
Hv2 = 2.375;
H1 = 3.9;
CE = 0.82;
Astar1 = 0.9282;
Astar2 = 1.1602;
tspan = [0 9];
Q0 = zeros(3,2);
[t,Q] = ode45(@(t,Q) fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2), tspan, Q0)%, options)
plot(t,Q(:,1),'-o',t,Q(:,2), '.-')
function dQdt = fun4(t,Q,A_a,g1_1,g2_1,Hv1,Hv2,ga_1,H1,CE,Astar1,Astar2)
dQdt = zeros(6,1);
dQdt(1:2) = (Astar1^2)*((g1_1*Hv1 + ga_1*(H1 + CE))-((Q(3)^2)/A_a^2));
dQdt(3:4) = (Astar2^2)*((g2_1*Hv2 + ga_1*(CE))-((Q(3)^2)/A_a^2));
dQdt(5:6) = Q(1) + Q(2);
end
You need to look if the plot has to be changed, since the solution Q now has 6 columns. One way would be:
subplot(3,1,1)
plot(t,Q(:,1),'-o',t,Q(:,2), '.-')
subplot(3,1,2)
plot(t,Q(:,3),'-o',t,Q(:,4), '.-')
subplot(3,1,3)
plot(t,Q(:,5),'-o',t,Q(:,6), '.-')
Also im not sure about the last line in the function - maybe:
dQdt(5:6) = Q(1:2) + Q(3:4);
?
Best regards
Stephan
2 件のコメント
Stephan
2019 年 2 月 19 日
編集済み: Stephan
2019 年 2 月 19 日
your function as you wrote it will give as many answers for Q1 as g1_1 has elements, because it follows the rules of linear algebra. You add and multiply scalar values to a 1x2 vector, which always results in a 1x2 vector.
If i understood you correctly, you should combine the previous time dependent calculation of the factors with the calculation of Q in one common function to get what you want.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!