Shooting Method On Harmonic Equation

2 ビュー (過去 30 日間)
Alexander Kimbley
Alexander Kimbley 2019 年 2 月 19 日
編集済み: Torsten 2019 年 2 月 28 日
I'm really new to Matlab, so this may be ridicously easy what I'm about to ask, but bare with me please.
I'm trying to integrate the Harmonic equation y'' +(a^2)*y=0 with a=2.4, with BC y(0)=y'(pi)=0. I'm doing this to try and "shoot" for the actual value of y at y=pi which we obviously can find analytically but I need to get my head around the code so I can apply this to a more complicated problem.
Thanks.

採用された回答

Torsten
Torsten 2019 年 2 月 20 日
function main
ydot0_start = 1.0;
a = 2.4;
iflag = 0;
sol = fzero(@(x)fun_shooting(x,a,iflag),ydot0_start);
iflag = 1;
y_at_pi = fun_shooting(sol,a,iflag)
end
function res = fun_shooting(x,a,iflag)
fun_ode = @(t,y)[y(2);-a^2*y(1)];
tspan = [0,pi];
y0 = [0;x];
[t,y] = ode45(fun_ode,tspan,y0);
if iflag == 0
res = y(end,2);
else
res = y(end,1);
end
end
  8 件のコメント
Alexander Kimbley
Alexander Kimbley 2019 年 2 月 27 日
So how would I go about changing the conditions to y(0)=0, y'(0)=1, where we alter 'a' to get y(pi)=0 to 10^-8 accuaracy say, assuming we dont actually know the true value of a.
Thanks.
Torsten
Torsten 2019 年 2 月 28 日
編集済み: Torsten 2019 年 2 月 28 日
function main
a0 = 4.5;
a = fzero(@fun_shooting,a0)
end
function res = fun_shooting(x)
fun_ode = @(t,y)[y(2);-x^2*y(1)];
tspan = [0,pi];
y0 = [0;1];
[t,y] = ode45(fun_ode,tspan,y0);
res = y(end,1);
end

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by