How can i choose the k initial centroids far away from each other in k-means clustering based image segmentation
1 回表示 (過去 30 日間)
古いコメントを表示
The steps performed for k-means clustering are as follows:
- Choose k initial centroids
- Compute the distance from each pixel to the centroid
- Recalculate the centroids after all the pixels have been assigned
- Repeat steps 2 and 3 until the same points are assigned to each cluster in consecutive rounds.
How can i choose the k-initial centroids, such that they are far from each other.
0 件のコメント
採用された回答
Alok Nimrani
2019 年 2 月 21 日
You can make use of k-means++ algorithm to choose the initial centroids far away from each other. This algorithm is the one used by default while performing k-means clustering using the k-means function in MATLAB.
Hope this helps.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Statistics and Machine Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!