Why are there Topic Concentration Iterations when you disable fitting topic concentration in fitlda?

1 回表示 (過去 30 日間)
When I run fitlda with 'FitTopicConcentration' set to false, I still get `Topic Concentration Interatons'.
For example:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',false,'LogLikelihoodTolerance',0,'IterationLimit',20);
gets:
Initial topic assignments sampled in 1.44622 seconds.
=====================================================================
| Iteration | Time per | Relative | Training | Topic |
| | iteration | change in | perplexity | concentration |
| | (seconds) | log(L) | | iterations |
=====================================================================
| 0 | 0.90 | | 6.715e+02 | 0 |
| 1 | 1.79 | 3.3759e-02 | 5.429e+02 | 0 |
| 2 | 1.70 | 1.2228e-02 | 5.031e+02 | 0 |
| 3 | 1.58 | 2.1513e-03 | 4.965e+02 | 0 |
| 4 | 1.57 | 6.2666e-04 | 4.945e+02 | 0 |
| 5 | 1.55 | 3.3881e-04 | 4.935e+02 | 0 |
| 6 | 1.60 | 2.5182e-04 | 4.927e+02 | 0 |
| 7 | 1.55 | 1.5109e-04 | 4.923e+02 | 0 |
| 8 | 1.62 | 2.2085e-04 | 4.916e+02 | 0 |
| 9 | 1.64 | 2.1745e-04 | 4.909e+02 | 0 |
| 10 | 1.66 | 1.0178e-04 | 4.906e+02 | 0 |
| 11 | 1.86 | 1.1432e-04 | 4.903e+02 | 4 |
| 12 | 1.79 | 6.5833e-04 | 4.883e+02 | 3 |
| 13 | 1.77 | 4.3774e-04 | 4.870e+02 | 3 |
| 14 | 1.70 | 4.8030e-04 | 4.855e+02 | 3 |
| 15 | 1.73 | 4.1302e-04 | 4.843e+02 | 3 |
| 16 | 1.69 | 1.9747e-04 | 4.837e+02 | 3 |
| 17 | 1.73 | 2.5513e-04 | 4.829e+02 | 3 |
| 18 | 1.83 | 2.4952e-04 | 4.822e+02 | 3 |
| 19 | 1.63 | 9.3627e-05 | 4.819e+02 | 2 |
| 20 | 1.66 | 1.0886e-04 | 4.816e+02 | 2 |
=====================================================================
Why is the rightmost column not all zeros? What does "topic concentration iterations" mean?
  1 件のコメント
Stephen Bruestle
Stephen Bruestle 2019 年 1 月 17 日
Note, when I run:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',true,'LogLikelihoodTolerance',0,'IterationLimit',20);
I get:
Initial topic assignments sampled in 1.31452 seconds.
=====================================================================================
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
=====================================================================================
| 0 | 0.59 | | 6.715e+02 | 50.000 | 0 |
| 1 | 1.59 | 3.2014e-02 | 5.487e+02 | 50.000 | 0 |
| 2 | 1.57 | 1.1809e-02 | 5.098e+02 | 50.000 | 0 |
| 3 | 1.57 | 2.9063e-03 | 5.006e+02 | 50.000 | 0 |
| 4 | 1.68 | 7.4965e-04 | 4.983e+02 | 50.000 | 0 |
| 5 | 1.55 | 4.2984e-04 | 4.970e+02 | 50.000 | 0 |
| 6 | 1.61 | 2.2000e-04 | 4.963e+02 | 50.000 | 0 |
| 7 | 1.57 | 1.3672e-04 | 4.959e+02 | 50.000 | 0 |
| 8 | 1.55 | 3.0094e-04 | 4.950e+02 | 50.000 | 0 |
| 9 | 1.47 | 1.7135e-04 | 4.944e+02 | 50.000 | 0 |
| 10 | 1.53 | 1.9109e-04 | 4.939e+02 | 50.000 | 0 |
| 11 | 3.51 | 5.6307e-05 | 4.937e+02 | 8.503 | 47 |
| 12 | 2.40 | 4.8823e-02 | 3.699e+02 | 6.363 | 22 |
| 13 | 2.05 | 7.0746e-03 | 3.548e+02 | 6.023 | 13 |
| 14 | 2.01 | 1.7874e-03 | 3.511e+02 | 5.897 | 9 |
| 15 | 2.43 | 1.2725e-03 | 3.485e+02 | 5.775 | 9 |
| 16 | 1.89 | 1.2613e-03 | 3.460e+02 | 5.625 | 10 |
| 17 | 1.88 | 1.1882e-03 | 3.436e+02 | 5.512 | 9 |
| 18 | 1.90 | 1.2557e-03 | 3.411e+02 | 5.387 | 9 |
| 19 | 1.89 | 9.4163e-04 | 3.392e+02 | 5.307 | 7 |
| 20 | 1.94 | 8.2492e-04 | 3.376e+02 | 5.217 | 8 |
=====================================================================================

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeModeling and Prediction についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by