How does bayesopt fit a Gaussian process regression model to noisy data?
8 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I am using bayesopt to optimise a non-deterministic objective function. I have set the ‘IsObjectiveDeterministic’ input argument to ‘false’, to reflect the stochastic nature of my objective function. My objective function features different levels of noise, depending on the input that is applied to the model.
My question is, does the Gaussian process regression model used in bayesopt assume a constant variance on the noise applied to objective function, or does the GPR model use a non-identically distributed noise for different data points in the observed data? If the latter case is true, how is the noise estimated for different inputs?
Many thanks
0 件のコメント
採用された回答
Don Mathis
2019 年 1 月 16 日
編集済み: Don Mathis
2019 年 1 月 16 日
bayesopt uses fitrgp to fit the GP models, which assumes constant noise everywhere.
2 件のコメント
Don Mathis
2019 年 1 月 17 日
That's part of the Gaussian Process learning algorithm, described here https://www.mathworks.com/help/stats/gaussian-process-regression-models.html
その他の回答 (1 件)
Resul Al
2019 年 1 月 17 日
Hi Don,
Is there a way to make fitrgp to estimate heteroscedastic noise, i.e noise variance is not constant everywhere?
Thank you.
1 件のコメント
Don Mathis
2019 年 1 月 17 日
fitrgp provides no built-in way to do that. It may be possible to do it with a custom kernel function, but I'm not sure.
参考
カテゴリ
Help Center および File Exchange で Gaussian Process Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!