Solving 2nd order differential equation using ode45
1 回表示 (過去 30 日間)
古いコメントを表示
I am trying to solve this equation
x=0.5*x''*t^2;
Initial guess
x(0)=0;%starting point
x''(0)=0;%starting acceleration
So the place my vehicle is, depends on the acceleration an the time. I want to solve this equation with ode45 so that I get the place and acc during all given times.
This is my code:
[t,x]=ode45(@fun,[0 30],[0 0])
function dX=fun(t,X)
dX(1)=X(2);
dX(2)=2*X(1)/t^2;
dX=[dX(1);dX(2)];
end
Problem is that Matlab returns only returns NaN values. Could someone please explain why?
Thanks
1 件のコメント
Torsten
2019 年 1 月 7 日
You can't prescribe x''(0) for a second-order ODE. Only x(0) and x'(0) are allowed.
採用された回答
madhan ravi
2019 年 1 月 5 日
Reason: Because there is division by 0 therefore nans are encountered.
[t,x]=ode45(@fun,[0.00001 30],[0.00001 0.00001])
function dX=fun(t,X)
dX(1)=X(2);
dX(2)=2*X(1)/t^2;
dX=[dX(1);dX(2)];
end
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!